In this monograph, Roberta Morano re-examines Carl Reinhardt's 'Ein arabischer Dialekt gesprochen in 'Oman und Zanzibar' (1894), a key work in Omani Arabic dialectology until the 1980s, when new linguistic studies on the Arabic varieties spoken in Oman began to appear.

The book provides a linguistic analysis of the Omani vernacular spoken in the al-ʿAwābī district (northern Oman), based on the comparison of native inhabitants' speech with data collected by the author. This comparison reveals a wide diachronic linguistic variation in the region, and the threat that such variation poses to linguistic features specific to the vernacular.

Organised in four chapters, the book introduces a sociolinguistic analysis of the Omani language, followed by an in-depth analysis of the al-ʿAwābī vernacular. The appendix includes two sample texts, fourteen proverbs and one traditional song. This study will be of interest to those working in the fields of Omani Arabic, historical and comparative linguistics, translation and interpretation, or those with an interest in how languages develop over time.

As with all Open Book publications, this entire book is available to read for free on the publisher's website. Printed and digital editions, together with supplementary digital material, can also be found here: www.openbookpublishers.com

Cover image: Wādī Banī Kharūṣ (2018) by Roberta Morano
Cover design: Anna Gaš
Phonological descriptions of Omani varieties are scarce. As regards the northern part of the country, Brockett’s (1985) study deals with the agricultural terminology of Khabura, introduced with a brief phonological account of that dialect. Holes’s (1989) overview of Omani dialects does not report any specific phonological traits—with the exception of reflexes of the OA consonants /q/, /ǧ/, and /k/. Other recent descriptions—such as the ones mentioned in §5.0—deal only in part with phonology and do not present an exhaustive account for comparison.

Reinhardt’s (1894) description of Banū Kharūṣi phonological traits covers the first chapter of his work, and examines consonants, vowels, diphthongs, assimilation, and word stress. His account on this matter, however—as mentioned in §6.0—is not completely reliable, due both to the lack of transcription on his part and to the nature of his informants, i.e., they were Omanis who had lived outside of Oman for most of their lives. Moreover, Reinhardt provides no details about their pronunciation, which was likely to have been influenced by other Arabic varieties (e.g., the Egyptian variety of Cairo, where they lived after leaving Oman), or other languages (e.g., Swahili in Zanzibar).

The phonological description in this chapter considers primary data elicited from the spontaneous speech of the participants and analysed with PRAAT\(^1\), whereas the broader theoret-

\(^1\) PRAAT is computer software used for speech analysis in phonetics.

1.0. Consonants

The al-ʿAwābī district consonantal inventory contains 27 segments, all of which can appear in all word-positions, with the exception of the glottal stop (/ʾ/) and the glides, which are weakened or deleted altogether in certain positions. All consonants may be geminated, with the sole exception of hamza.

Table 2.1: Consonantal inventory of the al-ʿAwābī district

<table>
<thead>
<tr>
<th>Transcription</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/ʾ/</td>
<td>voiceless glottal stop</td>
</tr>
<tr>
<td>/b/</td>
<td>voiced bilabial stop</td>
</tr>
<tr>
<td>/t/</td>
<td>voiceless alveolar stop</td>
</tr>
<tr>
<td>/ṯ/</td>
<td>voiceless interdental fricative</td>
</tr>
<tr>
<td>/g/</td>
<td>voiced velar stop</td>
</tr>
<tr>
<td>/ḥ/</td>
<td>voiceless pharyngeal fricative</td>
</tr>
<tr>
<td>/ḥ/</td>
<td>voiceless velar fricative</td>
</tr>
<tr>
<td>/d/</td>
<td>voiced alveolar stop</td>
</tr>
<tr>
<td>/ḏ/</td>
<td>voiced interdental fricative</td>
</tr>
<tr>
<td>/r/</td>
<td>voiced alveolar tap</td>
</tr>
<tr>
<td>/z/</td>
<td>voiced alveolar fricative</td>
</tr>
<tr>
<td>/s/</td>
<td>voiceless alveolar fricative</td>
</tr>
<tr>
<td>/š/</td>
<td>voiceless postalveolar fricative</td>
</tr>
<tr>
<td>/ṣ/</td>
<td>emphatic voiceless alveolar fricative</td>
</tr>
<tr>
<td>/d/</td>
<td>emphatic voiced alveolar stop</td>
</tr>
<tr>
<td>/ṯ/</td>
<td>emphatic voiceless alveolar stop</td>
</tr>
<tr>
<td>/ʿ/</td>
<td>voiced pharyngeal fricative</td>
</tr>
<tr>
<td>/ḡ/</td>
<td>voiced velar fricative</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>/f/</td>
<td>voiceless labiodental fricative</td>
</tr>
<tr>
<td>/q/</td>
<td>voiceless uvular stop</td>
</tr>
<tr>
<td>/k/</td>
<td>voiceless velar stop</td>
</tr>
<tr>
<td>/l/</td>
<td>voiced alveolar lateral approximant</td>
</tr>
<tr>
<td>/m/</td>
<td>voiced bilabial nasal</td>
</tr>
<tr>
<td>/n/</td>
<td>voiced alveolar nasal</td>
</tr>
<tr>
<td>/h/</td>
<td>voiceless glottal fricative</td>
</tr>
<tr>
<td>/w/</td>
<td>voiced labiovelar approximant</td>
</tr>
<tr>
<td>/y/</td>
<td>voiced palatal approximant</td>
</tr>
</tbody>
</table>

Reinhardt’s (1894, 4–6) section on consonants examines their realisation, frequently referring to the German system of sounds—perhaps to facilitate the understanding of the German soldiers for whom the work was intended. His phonological description is supported by lexical examples for each consonant, reported in both Arabic script and transcription. Reinhardt (1894, 8–11) also provides lexically determined variants of some consonants, some of which are still valid today. In the following list, the lexically determined variants of consonants found in the primary data are presented, providing examples from recent recordings, and adding, when necessary, remarks on Reinhardt’s notes.

1.1. Tā (ت)

*t can be realised as dāl via assimilation when adjacent to a voiced consonant, e.g., kidf < kitf ‘shoulder’, pl. kdūf. The same is reported by Reinhardt (1894, 9).
1.2. **Qāf** (ق), **kāf** (ك), and **ǧīm** (ج)

q is realised as the voiceless uvular stop [q].

k is realised in all cases as the voiceless velar stop [k]. In the primary data, there is one lexeme recorded in al-ʿAlya (Wādī Banī Kharūṣ) from an old illiterate male speaker (i.e., speaker 8) where the velar stop is affricated as [č]—i.e., *seččārā* ‘drunkards’ > **سكارى**.

ǧ is generally realised as the voiced velar stop [g]. The same variables are reported by Reinhardt (1894, 4–6), who adds that in the case of other Omani tribes, the voiced velar stop /g/ is affricated as [ǧ].

1.3. **The Liquid Consonants: Rāʾ (ر) and lām (ل)**

In the primary data, these two consonants appear to be somewhat interchangeable, and the same is reported by Reinhardt (1894, 10). The primary data include a few examples: words like *sulţān* ‘sultan’ and *inglezi* ‘English’ are realised respectively as *surṭān* and *ingrezi* by all consultants.

1.4. **The Emphatic Consonants: Tā (ط), zā (ظ), šād (ض), and dād (ض)**

ḍ and *ẓ* are merged in one sound /ḍ/.

Reinhardt (1894, 7) reports four emphatic consonants—/ṣ/, /ṭ/, /ḍ/, and /ẓ/—but later states that the two sounds *ḍ* and *ẓ* are merged in one sound /ḍ/.

2 Reinhardt does not specify the relevant tribe(s).
and *ẓ merged into /ḍ/. In the primary data, there is no distinction between *ḍ and *ẓ, and the reflex for both is /ḍ/.

*ṣ and *ṭ retain their emphatic sound in all cases in the primary data.

1.5. The Interdentals: Tā (త) and dāl (漳州)

Reinhardt (1894, 10) states that the voiced interdental fricative *ḍ is realised as either /ḍ/ or /d/, and that the voiceless interdental fricative *ṭ is realised as /t/, providing, however, only one or two examples for each case.

In the primary data the interdentals /ṭ/ and /ḍ/ are retained in all cases.

1.6. Hamza (ء)

Reinhardt’s (1894, 8–9) analysis of hamza in the Banū Kharūṣī dialect is very detailed, although not supported by enough examples. Nevertheless, the behaviour of the hamza in the vernacular under investigation did not seem to have undergone change.

In the primary data, hamza is not retained in initial position:

- in words like ʾḥit < ʾuḥt ‘sister’; sum < ʾism ‘name’; hel < ʾahl ‘family’; mrā ‘woman’ < ʾimrā
• *? can also be realised, in specific words, as: ʿayn, e.g., ʿašl < ʿašl ‘origin’; wāw, e.g., bedwe ‘beginning’; and yā, e.g., yāsīr < ʿasīr ‘prisoner’.³

In medial position, hamza is not retained and some nouns show compensatory lengthening of the vowel (e.g., bīr < biʾr ‘well’; rās < raʾs ‘head’).⁴

In final position, the hamza follows the same rules applied to III-ء and III-ى verbs: it is not retained and is realised as either /a/, e.g., qarā/yiqra ‘read’, or /i/, e.g., meše/yumši ‘walk’.

1.7. Tā Marbūṭa (ة)

The tā marbūṭa—a distinctive feature of feminine nouns and some masculine plurals—is often realised as [e] in this dialect, raised from /a/ according to the rules of imāla. Reinhardt (1894, 9) does not mention the behaviour of the feminine ending in the speech of his informants, reporting only the case of بدأ bedwe ‘beginning’, which also presents a final hamza.

In this work, the tā marbūṭa will be transcribed as either [e] or [a], based on the pronunciation of the specific word in the district.⁵

³ This phenomenon is also reported by Brockett (1985, 13) for the dialect of Khabura, in al-Batinah.

⁴ The lengthening of medial hamza in pre-consonantal position can be found in most modern Arabic dialects, with the exception of various Yemeni dialects (Watson 2002, 18).

⁵ In the literature, tā marbūṭa is usually transliterated -ah, but here it will be transcribed as the simple vowels a or e to reflect the informants’ sound production.
1.8. **Wāw (و) and yā (ي)**

In the primary data, *w* and *y* retain their consonantal nature only when in syllable-onset position, e.g., حياة ‘life’; دواء *duwā* ‘medicine’.

2.0. Vowels

Reinhardt’s (1894, 7–8) section on the behaviour of vowels is very short, briefly mentioning their sounds in specific consonantal environments. Here the description of vowels as it appears in the primary data is reported.

The vowel inventory of the al-‘Awābī district consists of

- three short vowels: /a/, /i/, /u/;
- five long vowels: /ā/, /ē/, /ī/, /ō/, /ū/;
- two diphthongs: /aw/ and /ay/.

Short vowels differ in their realisation, depending on their syllabic environment: medial /i/, for example, is usually lax and retracted, e.g., [gild] ‘skin’; in word-final position, it is tenser, higher, and more front, e.g., [binti] ‘my daughter’; before /b/, /m/, /f/, /r/, /q/, and the emphatics, it is backed and rounded, e.g., [zaːhub] ‘ready’; with velars and pharyngeals, it is lowered and centralised, e.g., [jḥəbːo] ‘he likes him’ (cf. Holes 2008, 480). The short vowel /u/ has the back mid rounded allophone [o] when preceding or following an emphatic sound.

The short vowel /a/ has two allophones in this variety: it is a low back unrounded [ɑ] next to an emphatic or a uvular consonant; and it is raised to [e], usually when gutturals and emphatics are absent, according to the rules that regulate *imāla*.
Short high vowels in unstressed non-final position undergo reduction or deletion. This phenomenon is known as syncope, and in other Omani varieties is of common occurrence, especially in rapid speech (Glover 1988, 61; Davey 2016, 61). In the primary data, syncope seems to occur in the first syllable only when the vowel is high, e.g., gˈbin < gibin ‘cheese’, and not when it is low, e.g., ˈgamal ‘camel’ (cf. Jastrow 1980, 110). Reinhardt (1894, 41, 146) does not mention syncope in his work, although his lexical data clearly show its occurrence, in both nouns and verbs, e.g., rgǐl < rigil ‘foot’; lbǐs < labis ‘wear, dress’). The occurrence or non-occurrence of syncope can also be explained through metrical stress theory (see present chapter, §5.0).

The primary data show that OA *ū and *ī are retained in most positions as independent phonemes, e.g., fulūs ‘money’ and bīḍ ‘eggs’. The long vowel /ū/ also has the allophone [ō], when preceding an emphatic sound or a stop or following a parhyngeal sound, e.g., qōṭi ‘tin’, nōbe ‘also’; ʿōq ‘sickness, disease’.

2.1. ʾImāla

The term ʾimāla, literally ‘inclination’, has been used since the time of the medieval Arab grammarians to indicate the fronting and raising of long /ā/ towards /ī/. In the ancient sources, not

6 See also Reinhardt’s (1894, 135) list of strong verbs.

7 “And the sense [denoted by] the [term] ʾimāla is that you incline the ʿalif in the direction of yāʾ, and the fatha in the direction of the kasra” (Ibn Sarrāḡ, cited in Levin 1998).
much is said about the same phenomenon for short /a/, for which *imāla* is found, for example, in the vernacular under investigation. According to the medieval grammarians, *imāla* is a phenomenon conditioned by certain phonological factors: in particular, it can occur because of an etymological yā in the root, or the *kasra* of an adjacent syllable which can incline /a/ towards [i] (Cantineau 1960, 97). If it is true that strong *imāla*, i.e., the realisation of /a/ as [i], is not a common occurrence, it is also true that the inclination of /a/ towards [e], both in medial and final position, is a widespread phenomenon in Eastern Arabic dialects.

The realisation of the *imāla*, both of /ā/ and /a/, depends on specific phonological factors, and in particular on the nature of the consonants that cluster around the vowel. In the primary data, it occurs in medial and final position, usually in the absence of gutturals or emphatics: in this case, short vowel /a/ is raised to either [e] or, more rarely, [i], e.g., *kelb* ‘dog’, *gebel* ‘mountain’, *šill* ‘take’, *siyyāra* ‘car’, *misgid* ‘mosque’. *Imāla* in final position is very common in nouns with the feminine ending َة or ى, e.g., ِنوٌة *nōbe* ‘also’; ِخمَسة *ḥamse* ‘five’; *bedwe* < ِبَدَءَة ‘beginning’, and in the 3FSG possessive pronoun -/ha/, which is realised as -/he/ in cases such as ُهَوِّبَة- ”her grandmother’,

8 Cantineau (1960, 99) writes: “[...] l’ɔimāla allant jusqu’à e est largement attestée: en Orient son domaine couvre la majeure partie du Liban et le G. ed-Drūz; on le constate aussi dans l’oasis de Palmyre. En Afrique du Nord, la région de Bōne connaît aussi une ɔimāla allant jusqu’à e.”

9 The first short vowel /o/ in ُهوِّبَة- is one of the rare examples in the primary data of progressive vowel harmony.
Diachronic Variation in the al-ʿAwābī Omani Arabic Vernacular

whilst in others as -/ha/, e.g., ‘umr-ha ‘her age’. The variation between the two depends once again on the consonantal environment: it is realised as -/ha/ when following a fricative or one of the sonorants r, l, n, and -/he/ after the epenthetic unrounded front vowel [i], e.g., šuṭi-he ‘I/you (2MSG) saw her’.

Whilst the occurrence of imāla for the short vowel /a/ is supported by numerous examples in the primary data, the raising of long vowel /ā/ to /ē/ is found only in the conjugation of geminate, hamzated, and weak verbs (see ch. 3, §§2.2–4); no evidence is traceable in the lexicon.

In Oman, the imāla occurs in Dhofari Arabic (cf. Davey 2016) and in other dialects of the al-Batinah and Sharqiyyah regions, usually in communities living on the seaward side of the al-Hajar Mountains (cf. Holes 2008, 481). In terms of areal distinctions in the district under investigation, the imāla always occurs in the speech of informants from al-ʿAwābī regardless of their age and level of education. In Wādī Banī Kharūṣ, on the contrary, the imāla is found in the speech of AS and YS, either with a lower or a higher level of education, but is not found in the speech of OS, who had no—or very little—access to education or exposure to the speech of the town.10

2.2. Diphthongs

In the Semitic languages, the term diphthong normally refers to a falling diphthong, i.e., one that is formed by a short vowel fol-

10 An exemplification of areal distribution of imāla in the district based on the informants’ speech is given in Table 2.3 in the next section.
lowed by a glide, i.e., /w/ or /y/. In many modern Arabic dialects, the CA diphthongs *aw and *ay are not preserved.11

In the primary data, the long vowels [ō] and [ē] are the result of a process of monophthongisation of the OA diphthongs, as well as being allophones of /ū/ and /ā/, respectively. According to Youssef (2013, 186), “monophthongisation is an active synchronic process that fails to apply in particular environments, both phonological and morphological.” Few studies have dealt with the behaviour and analysis of diphthongs in Gulf and Peninsular dialects, and it is difficult to formulate a clear explanation for the anomalous forms of diphthongs in the al-ʿAwābī district vernacular.

Reinhardt (1894, 8) states that diphthongs are retained only in monosyllabic words and in words with a geminate glide, whereas in all other cases they are lengthened. However, this is not entirely true today, since the primary data show that the retention of diphthongs varies depending on its position in the word, as exemplified in the following lists.12

\begin{itemize}
\item 11 Cantineau (1960, 103) writes:
\begin{quote}
Dans les dialectes arabes, la conservation phonétique complète des anciennes diphtongues est un fait rare. En Orient, cette conservation est attestée au Liban.... Au Maghreb, la conservation complète et inconditionnée des anciennes diphtongues est un fait fort rare, sinon inexistant.
\end{quote}

\item 12 Admittedly, given the small number of informants consulted by Reinhardt and the consequent access to a limited amount of data, it might well have been that these rules also applied to diphthongs at his time.
\end{itemize}
2.2.1. Glide as C₁

Diphthongs in the first syllable of the word are retained when the glide is the antepenultimate consonant in the word, irrespective of where the consonant occurs in the root. This happens in (a) comparative adjectives, (b) passive participles, (c) verbal nouns, and (d) broken plurals:

(a) awsa‘ ‘wider’ awsaḥ ‘dirtier’
 awga‘ ‘more painful’ awṫaq ‘more solid’
(b) mawtuq ‘reliable’ mawgūd ‘existent’
(c) tawbiḥ ‘blame’ tawrib ‘double meaning’
 taysir ‘simplification’
(d) awlād ‘children’ awṫān ‘countries’

2.2.2. Glide as C₂

Diphthongs in medial position are retained in words with a geminate glide, which is consistent with Reinhardt (1894, 8), e.g., jaww ‘weather’, hayy ‘neighbourhood’, ʂawwar ‘he photographed’, dawwar ‘he searched’, taww ‘now’.

Monosyllabic words that otherwise end in -wC or -yC in this position may undergo monophthongisation.

Table 2.2: Monosyllabic nouns where the diphthong is subject to monophthongisation in informant speech

<table>
<thead>
<tr>
<th>Diphthong</th>
<th>Monophthong</th>
<th>Gloss</th>
</tr>
</thead>
<tbody>
<tr>
<td>fawq</td>
<td>fōq</td>
<td>up, above</td>
</tr>
<tr>
<td>kayf</td>
<td>kēf</td>
<td>how</td>
</tr>
<tr>
<td>bayt</td>
<td>bēt</td>
<td>house</td>
</tr>
<tr>
<td>šayb</td>
<td>šēb</td>
<td>old man</td>
</tr>
<tr>
<td>zayn</td>
<td>zēn</td>
<td>good, well</td>
</tr>
<tr>
<td>ʂayr</td>
<td>ʂēr</td>
<td>different</td>
</tr>
<tr>
<td>layl</td>
<td>lēl</td>
<td>night</td>
</tr>
</tbody>
</table>
However, there are exceptions to this rule. The following monosyllabic nouns retain their original diphthong: zayt ‘oil’, ṭayr ‘bird’, sawt ‘voice’. The noun ‘ayš ‘rice’ is realised as ‘īš in al-ʿAwābī by YS and AS, regardless of their level of education.

The case of šay ‘thing’ is also peculiar: it is realised variously as [šay], [šey]—with clear occurrence of imāla—and as the monophthongised form [šī].

Diphthongs in loanwords are retained when in final position, e.g., bāw ‘wood’, but can be subject to monophthongisation in other cases. The word layt ‘light’ is often monophthongised as lēt in the speech of YS from al-ʿAwābī—regardless of their level of education—and it is always monophthongised in the plural form, i.e., lētāt.

In Table 2.3, an account of the distribution of the occurrence of both imāla in the realisation of the word شيء ‘thing’ and monophthongisation in the word لايِت ‘light’ is given.

Table 2.3: Occurrence of imāla and monophthongisation in informant speech

<table>
<thead>
<tr>
<th>‘thing’</th>
<th>‘light’</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>šey</td>
<td>leyt</td>
<td>1, 2, 10, 11</td>
</tr>
<tr>
<td>šey</td>
<td>lēt</td>
<td>3, 7, 12, 15</td>
</tr>
<tr>
<td>šay</td>
<td>layt</td>
<td>4, 8, 13, 14</td>
</tr>
<tr>
<td>šī</td>
<td>lēt</td>
<td>5, 6, 9</td>
</tr>
</tbody>
</table>

A few conclusions can be drawn from the data presented in this table. First, imāla occurs in the speech of all al-ʿAwābī inform-
nants, regardless of their age or level of education. Second, in the instances of YS with a high level of education (i.e., university), we can see that شيء is monophthongised and raised to [šī]. Third, imāla occurs in the speech of AS and YS from Wādī Banī Kharūṣ, but not in that of the OS. Finally, with regards to the monophthongisation of the word لابيت, we can see that speakers who have a strong occurrence of imāla in their speech often monophthongise /layt/ to /lēt/ or raise /a/ to /e/, as in [leyt]. The examples reported above also show that the raising is specifically perceptible in the speech of two illiterate AS (i.e., speakers 1 and 2)—from Wādī Banī Kharūṣ and al-ʿAwābī, respectively—as well as in that of one from al-ʿAwābī with a medium level of education (i.e., speaker 10). In all other cases, لابيت is monophthongised in the speech of AS and YS in both areas under investigation.

2.2.3. Medial Glide in Monosyllabic Words

Diphthongs are retained in word-final syllables, e.g., māy ‘water’, šāy ‘tea’, bāw ‘wood’.

2.2.4. Dual Endings

The dual ending -ayn always undergoes monophthongisation to -īn, e.g., مرتين, มาร์تين ‘twice’,13 santīn ‘two years’.

2.3. Assimilation

Assimilation is a widespread process in Arabic dialects and in CA. It happens with the definite article al-, which is always

13 This example also shows a degemination phenomenon.
Phonology 73

similated when followed by a coronal consonant (a consonant produced with the tip or blade of the tongue), i.e.,
ر، ذ، ث، ت، ن، ل، ظ، ط، ض، ص، ش، س، ز.

In the primary data, t-prefixes of the non-past form of the verb and -t-suffixes of the past form show assimilation with the consonants /t/, /d/, and /ḍ/, e.g., ḏḍann ‘she thinks’ < ṭḍann; tmarradḍ ‘I was ill’ < tmarradḍ.

2.4. Metathesis

Metathesis refers to the rearranging or the switching of two contiguous segments within a word.

Reinhardt (1894, 14) dedicates a paragraph to this phenomenon with a few examples which the consultants did not recognise. Other examples in the data are ḥumra < ḥurma ‘a type of date’ and karhabā < kahrabā ‘electricity’.

2.5. Ghawa Syndrome

The Ghawa Syndrome takes its name from the Arabic word for coffee qahwa (in some dialects pronounced gahwa) and refers to the rearranging of the tonic syllable CaG to CGa, where G stands for ‘guttural’, e.g., CA qahwa ‘coffee’ is realised as ghawa in Bedouin dialects of Najd; in certain cases, a stressed vowel is inserted after a velar or a pharyngeal consonant, i.e., CaGáC, resulting in forms like qaháwa/gaháwa. In some dialects of Oman this phenomenon is still productive (Holes 2008, 481), but it does not seem to occur in the primary data.
3.0. Syllable Inventory

A syllable is “a unit of sound composed of a central peak of sonority (usually a vowel), and the consonant that cluster around this central peak.”\(^{14}\) In the majority of Arabic varieties, syllables always start with a consonant (or in some cases two) followed by a long or a short vowel, and usually only a certain combination of syllables is allowed.

The syllable inventory of the al-ʿAwābī district vernacular consists of three main syllable types that can occur in any position of the word (CV, CVV, and CVC) and two syllable types which appear in word-final position only (CVVC and CVCC). In addition to these, the vernacular spoken by the informants presents four forms that are outcomes of vowel elision or foreign loan. For purposes of stress assignment, syllables can be divided according to their weight in terms of light, heavy, and super-heavy.\(^ {15}\) The following table shows syllable structure based on stress and weight, according to the classification made by Watson (2002, 56–61).

\(^{14}\) Online access at https://glossary.sil.org/term/syllable.

\(^{15}\) A light syllable is formed by a consonant and a short vowel, i.e., CV, or, in some instances, by two consonants and a short vowel, i.e., CCV; a heavy syllable is usually formed by a consonant and a long vowel, i.e., CVV, or a branching rime, i.e., CVC; finally, a superheavy syllable is formed by either a consonant followed by a long vowel and a coda, i.e., CVVC, or an onset followed by a coda consisting of two or more consonants, i.e., CVCC.
Table 2.4: Syllable inventory of the al-ʿAwābī district vernacular

<table>
<thead>
<tr>
<th>Syllable</th>
<th>Weight</th>
<th>Monosyllabic</th>
<th>Polysyllabic</th>
<th>CV-template</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV</td>
<td>light</td>
<td>fa ‘so’</td>
<td>qawaya ‘iron’</td>
<td>CV-CV-CV</td>
</tr>
<tr>
<td>CVV</td>
<td>heavy</td>
<td>mū ‘what’</td>
<td>farāša ‘butterfly’</td>
<td>CV-CVV-CV</td>
</tr>
<tr>
<td>CVC</td>
<td>heavy</td>
<td>ḥit ‘sister’</td>
<td>gamal ‘camel’</td>
<td>CV-CVC</td>
</tr>
<tr>
<td>CVVC</td>
<td>superheavy</td>
<td>zēn ‘good’</td>
<td>fingān ‘coffee cup’</td>
<td>CVC-CVVVC</td>
</tr>
<tr>
<td>CVCC</td>
<td>superheavy</td>
<td>kidf ‘shoulder’</td>
<td>rūḥ-t ‘I went’</td>
<td>CVC-CVCC</td>
</tr>
<tr>
<td>CCV</td>
<td>light</td>
<td>štağaḷ-t ‘I worked’</td>
<td></td>
<td>CCV-CVCC</td>
</tr>
<tr>
<td>CCVC/V</td>
<td>heavy</td>
<td>mrā ‘woman’</td>
<td>mgumma ‘broom’</td>
<td>CCV-CCVC</td>
</tr>
<tr>
<td>CCVV</td>
<td>heavy</td>
<td>ṣdur ‘chest’</td>
<td>mhaṭṭa ‘station’</td>
<td>CCVV-CVC</td>
</tr>
<tr>
<td>CCVVC</td>
<td>superheavy</td>
<td>glās ‘glass’</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

According to the Sonority Sequencing Principle,16 a word must contain a sonority peak (often a vowel), preceded and/or followed by a sequence of segments (consonants) with progressively decreasing sonority values towards the word edge: the sonority hierarchy goes from vowels (4) to liquids (3), to nasals (2), and to obstruents (1). As Table 2.4 shows, the informants’ speech does not always follow this principle: words like gbin ‘cheese’ and bżār ‘spices’ begin with clusters of obstruent consonants. The phenomenon is the result of a process of syncope of the short vowel in the first syllable or of the deletion of initial hamza, e.g., mrā < یُامرا).

4.0. CCC Cluster

In the primary data, CCC clusters may occur in word-medial position, as a result of suffixation or doubled verbs, even though

16 The Sonority Sequencing Principle is a phonotactic principle that outlines the structure of a syllable in terms of sonority.
in some instances the speaker inserts an epenthetic vowel, [i] or [a], e.g., ṣuft(i)-he ‘I/you (2MSG) saw her’. The CCC cluster can also occur in monosyllabic words with suffixed pronouns, e.g., ṣdr-o ‘his chest’. This type of cluster can also result from the adaption of loanwords to the Arabic pattern, e.g., hanqrī ‘rich’ (< Hindi).

5.0. Stress

Reinhardt (1894, 15–18) presents a long section on stress in the Banū Kharūṣī dialect. He states that stress follows different rules when compared to other dialects in the Peninsula.¹⁷

In the primary data, the following stress rules apply:

(a) Stress a final superheavy syllable CVCC, CCVVC, and CVVC, if present, e.g., krīm ‘kind’, katābt ‘I wrote’, šrūbt ‘I drank’.

(b) If no superheavy syllable is present, stress the rightmost non-final heavy syllable CVV or CVC, e.g., safāra ‘embassy’, zábda ‘cotton’.

¹⁷ Reinhardt (1894, 15) writes:

Der Accent weicht, was die durch denselben bedingten Lautverschiebungen im Worte betrifft, im Oman-Dialekt von den übrigen bekannten arabischen Dialekten vielfach ab, giebt denselben theilweise sein charakteristisches Gepräge und beeinflusst das Verständniss der Sprache so, dass nicht omanische Araber Schwierigkeit haben, einem gewohnlichen Oman-Mann genau in seiner Rede zu folgen.
(c) In all other cases, stress the leftmost light syllable CV, e.g., *báqara* ‘cow’.

It is never possible to stress farther left than the antepenultimate syllable, e.g., *madrásat-he* ‘her school’.

Reinhardt (1894, 16) reports that stress falls on the penultimate syllable also when the word has the negative clitic -šī, the interrogative clitic -i, or the possessive or object pronouns are suffixed. In the primary data, his statement has been confirmed with respect to suffixed pronouns only, whereas the negative and the interrogative clitic did not occur in informant speech, save one exception (see below, ch. 4, §3.1, for further details).

Metrical stress theory examines two types of metrical feet, namely the iamb and the trochee:18 “the maximal and canonical iamb consists of a light syllable followed by a heavy syllable” (Watson 2011, 7), whereas a trochee consists of a long syllable which carries the stress followed by a short unstressed one. This type of metrical analysis based on iambs and trochees implies two different types of stress, namely iambic stress and trochaic stress. Trochaic stress is when in a CVCVC pattern the first syllable is stressed, i.e., CV-CVC, whereas iambic stress occurs in a CVCVC pattern, when the last syllable is stressed, i.e., CV-CV.

18 The foot is the basic unit in metrical theory and usually contains one stressed syllable and at least one unstressed syllable. On metrical theory applied to Arabic dialects, see the works of Hayes (1995) and Watson (2011b).
The Omani varieties for which we have documentation tend to exhibit iambic stress. In Dhofari Arabic, for example, a word like *gebēl* undergoes final vowel lengthening and first vowel deletion, i.e., *gbāl*, because of iambic stress (Davey 2016, 64). A similar tendency to syncope is shown in Muscat Arabic, where all unstressed short vowels in open syllables can undergo reduction or deletion (Glover 1988, 61).

Analysis of the primary data collected shows that in CVCVC patterns there is a tendency for the first light syllable CV to carry stress, e.g., 'gāmal ‘camel’, 'gebēl ‘mountain’. The behaviour of words like 'gāmal and 'gebēl shows that -CVC syllables in final position count as light and, therefore, do not attract stress. This phenomenon is also found in other Arabic dialects, e.g., Cairene and San′ani (McCarthy 1979; Watson 2002; 2011b) and it is due to extrametricality rules. Abu-Mansour (1992, 52) describes this phenomenon for Makkan Arabic, where the last consonant of the pattern CVCVC does not count in assignment of word stress. Cf. Hayse (1995, 56): “An extrametricality rule designates a particular prosodic constituent as

19 In Dhofari Arabic, forms with a final syllable -CVC or -CCVC, show a strong tendency to lengthen the short vowel, thereby creating super-heavy -CVVC or -CCVVC that always attract the stress (Davey 2016, 63). In addition to this, Glover (1988, 71) states that

in OA [Omani Arabic]... there is a tendency for stress to move to the end of the word, so that a two-syllable word like */rāṭāb/ ‘fresh date’, for example, is also commonly pronounced */rāṭāb/, with stress on both syllables, or */raṭāb/, which is then subject to reduction and may become */rāṭāb/, and in faster speech */rtāb/.
invisible for purposes of rule application: the rules analyse the form as if the extrametrical entity were not there.” This statement explains why a CVC syllable in final-word position is light, but heavy in non-final position: C₂ is extrametrical and, therefore, ignored for stress assignment.²⁰

The vernacular under investigation, in contrast to the dialects described by Glover (1988) and Davey (2016), shows a strong tendency to trochaic stress and extrametricality, placing it closer to the Arabic dialects of Egypt or North Africa, for example.

The extrametricality rule also explains why in the primary data syncope is not of common occurrence, whereas it is in Glover’s and Davey’s data: since syncope affects only unstressed short vowels, if the initial syllable is stressed, the vowel cannot be deleted. It remains to investigate further if this is the case in other dialectal varieties spoken in northern Oman.

²⁰ There are some restrictions to the application of extrametricality rules: (a) Constituency indicates that only constituents can be marked as extrametrical; (b) Peripherality states that in order for these constituents to be extrametrical, they need to be at the edge of the domain (left or right); (c) Edge Markedness indicates that “the unmarked edge for extrametricality is the right edge”; (d) Nonexhaustivity states that extrametricality is not applied, if it would make the whole domain extrametrical (Hayes 1995, 57–58).