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15. A Fate Worse Than Warming? 
Stratospheric Aerosol Injection 

and Catastrophic Risk

 Aaron Tang and Luke Kemp

Highlights:

•	 This chapter considers the potential impact on Global 
Catastrophic Risk of injecting particles into the atmosphere 
to reflect sunlight, stratospheric aerosol injection (SAI). This 
both represents a potential technological solution to the threat 
of climate change and a contributor to GCR in its own right.

•	 Analyses of potential high impact outcomes from ﻿SAI are 
lacking in contemporary research. This chapter helps resolve 
this gap by investigating four aspects of SAI’s potential 
contributions to catastrophic risk: 1) acting as a direct 
catastrophic risk (through ecological blowback); 2) interacting 
with other globally catastrophic hazards like nuclear war; 
3) exacerbating other risks that cascade and amplify across 
different systems; and 4) acting as a latent risk that is dormant 
but can later be triggered. 

•	 It finds that: the potential for major unforeseen environmental 
consequences seems highly unlikely but is ultimately 
unknown; SAI plausibly interacts with other catastrophic 
calamities, most notably nuclear war or an extreme space 
weather event; SAI could contribute to systemic risk by 
introducing stressors into critical systems such as agriculture 
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but this is highly understudied; and SAI deployment more 
tightly couples different ecological, economic, and political 
systems, creating a precarious condition of latent risk that is 
the largest cause for concern. 

•	 Across all these dimensions, the specific ﻿SAI deployment and 
associated governance, is critical. A well-coordinated use of 
a small amount of SAI could incur negligible risks, but this 
is an optimistic scenario. Conversely, larger use of SAI in an 
uncoordinated manner poses many potential dangers. We 
cannot equivocally determine whether SAI will be worse 
than warming. For now, a heavy reliance on SAI seems an 
imprudent policy response. 

This chapter provides a detailed case study of how and why interventions 
into climatic change require ﻿rigorous analysis. Without investigation 
into the possible harms precipitated by ﻿technological intervention, there 
is a very real risk that unforeseen consequences could be dramatic. 
The lessons drawn from this case study are likely instructive for other 
areas of GCR research, and other examples of generalisable case study 
research in the field can be found in Chapters 13 and 16. 

1. Introduction: Hothouse Earth or Shithouse Earth? 

Could the risks of large-scale ﻿solar geoengineering be worse than the 
dangers posed by ﻿climate change? Many concerns have been expressed 
over geoengineering the Earth’s climate. These tend to centre on solar 
radiation management (SRM) methods, particularly ﻿stratospheric aerosol 
injection (﻿SAI). These range from fears over negative, unintended effects 
on ecology, political conflict, mitigation deterrence to ethical objections. 
Given the breadth of objections, it is quite clear that ﻿SAI would be 
iatrogenic in some way. Like some medical interventions, ﻿SAI may have 
adverse side-effects and complications. The question is whether it could 
be worse than the problem it is seeking to remedy: ﻿climate change.

There is a wealth of information on the different risks posed by 
﻿climate change (although notably little on high-end warming scenarios), 
yet few attempts to compare this to the potential damages of ﻿SAI. This 
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is unsurprising since there have been limited attempts to systematically 
analyse the myriad of threats posed by ﻿SAI. 

We address this gap by analysing the severe downside risks of 
﻿SAI. We do not directly compare the risks posed by ﻿SAI and ﻿climate 
change in this chapter. Rather, we provide an analytical foundation for 
future comparative analyses. In this article we ask: what are the plausible 
contributions of ﻿SAI to Global Catastrophic Risk (GCR)? To the best of 
our knowledge this is the first attempt to offer a novel, comprehensive 
framework for comprehending the contributions of ﻿SAI to GCR. As 
noted in Section 2, this is a useful and original step forward for the 
nascent field of studying GCRs. This is not just simply adding up ﻿SAI’s 
potential negative impacts. It requires understanding how ﻿SAI could 
trigger or worsen other large-scale threats (such as nuclear warfare) 
or systemic risks. Understanding extreme downside risks can also help 
provide direction for policy and governance. The future may be hazy, 
yet avoiding the extreme downsides is a priority for risk management 
under ﻿uncertainty. To guide our investigation, we put forward a novel 
framework for understanding how ﻿SAI, or any other complex risk, 
contributes to GCR. We then use this to review and discuss the existing 
evidence on ﻿SAI’s critical threats. 

In Table 1 we provide a brief set of definitions of the key terms we 
use throughout this chapter.

Table 1: Definitions.

Term Definition
Climate 

Engineering
Large-scale, deliberate interventions into the Earth 
system to mitigate the effects of negative impacts of 
﻿climate change.1 

Extinction Risk A risk that could plausibly cause human ﻿extinction.
Global Catastrophic 

Risk (GCR)
A risk that could plausibly cause a loss in global 
﻿population of 10–25%2 and a disruption to one or more 
global critical systems. 

Solar Radiation 
Management 

Measures which impact the albedo of the Earth system in 
order to mitigate the impacts of ﻿climate change. 

Stratospheric 
Aerosol Injection

The injection of light-reflecting chemical, such as sulphur 
dioxide, into the stratosphere. 
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Term Definition
Systemic Risk The ability for an individual disruption or failure to 

﻿cascade into system-wide and cross-system failures3 due 
to structural conditions. 

Latent Risk Risk that is dormant under one set of conditions but 
becomes active under another set of conditions. 

Termination Shock A large and rapid increase in warming after the cessation 
of SRM measures. 

Buffering A period of roughly several months following the 
cessation of ﻿SAI where effects of ﻿termination shock do 
not occur. Redeployment of ﻿SAI during this period would 
ensure that ﻿termination shock does not occur.4 

Our approach makes use of a structured literature review and systems 
mapping exercise. We use our novel framework to structure a literature 
review covering studies relevant to the risks of ﻿SAI. For each area we 
highlight the level of evidence and ﻿uncertainty, and draw out some key 
implications. The ﻿nature of the risk will depend on the specifics of the 
geopolitical situation and the ﻿SAI intervention. We explore this through a 
causal-loop diagram (Figure 1) which plots out the connections between 
the level of risk, the amount of ﻿SAI loading, the level of international 
coordination and other key variables.

Note that for most of this chapter we address ﻿SAI in the abstract. 
The exact potential damage imposed by ﻿SAI would vary the way it is 
deployed. In Section 7 we discuss how the method of deployment 
creates different impacts. Throughout the chapter we assume a “default” 
deployment method of ﻿SAI to be the continuous multi-decadal global 
use of planes with multiple injection locations, guided by a global 
cooperative endeavour led by ﻿states with private sector contributions, 
with an overall objective to respond to global warming. Deployment 
“thickness” (how much warming is masked) is a particularly important 
variable. We flag thickness throughout our analysis. Where we discuss 
the risks of other potential forms of deployment we directly ﻿state so. 

We proceed by outlining our framework (Section 2), before examining 
﻿SAI’s direct catastrophic risks (global ecological impacts; Section 3), ﻿SAI’s 
interaction with other catastrophic ﻿hazards (Section 4), ﻿SAI’s potential 
input to ﻿systemic risk (Section 5), and finally ﻿SAI’s influence on ﻿latent risk 
(Section 6). We then discuss how different methods of deployment could 
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lead to different risks and what the policy implications of our analysis are 
(Section 7). To avoid the critical downside risks we consider throughout 
the chapter, ﻿SAI governance would have to be near perfect for multiple 
decades. 

A solution that is almost impossibly difficult to implement well, 
and that plausibly threatens ﻿catastrophe if implemented poorly, is not 
a good solution. 

Whether this is preferable to ﻿climate change remains to be seen. 

2. A Framework for Unravelling Global Catastrophe

There is no agreed framework for understanding the contribution of 
different phenomena to GCR. Most studies and reports on GCRs rely on 
analysing a set of large-scale “GCR-level” hazards.5 Usual suspects include 
anthropogenic risks such as ﻿nuclear weapons, ﻿climate change, and more 
speculatively, Artificial General Intelligence,6 biologically engineered 
pandemics, and natural risks such as super ﻿volcanoes and ﻿asteroids. While 
there have been some alternative frameworks for classifying GCRs,7 these 
have yet to be widely adopted. They are also disconnected from relevant 
literature on ﻿systemic risk. Moreover, while they are helpful in classifying 
a given ﻿hazard, they do not act as aids in understanding how much a given 
event or system could contribute to overall levels of GCR or ﻿extinction risk. 

There are several problems with the typical, ﻿hazard-centric approach. 
First, it is unclear how these ﻿hazards are decided on. Second, a risk is 
composed of ﻿hazards, ﻿vulnerabilities, ﻿exposure, and response, not just 
individual threats.8 Third, the different hazards are treated as disconnected 
when they frequently have similar institutional drivers. Fourth, it ignores 
﻿systemic risk, particularly the ability for a set of smaller, diffuse risks to scale 
to a global and cataclysmic level due to the fragility and interconnectedness 
of critical systems. Any practical framework needs to consider ﻿exposures, 
﻿vulnerabilities, and drivers as well as their interlinkages. 

We put forward a four-stream framework for understanding the 
contribution of a system or event to GCR. This rests not upon having a 
particular probability of occurring. Instead, we focus on what is plausible 
(rather than “merely possible”), consistent with our background 
knowledge of physical and social systems.9 Understanding risks which 
are plausible, high-impact, but low- or unknown-probability is critical 
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for robust decision-making under uncertainty.10 For example, making 
decisions on the “better” worst case is central to the Maximin approach. 
The framework covers the ﻿hazard, ﻿vulnerability, and ﻿exposure elements 
of risk. Hazards are directly assessed through the first two streams 
of the framework, while the focus on ﻿systemic ﻿risk analyses potential 
﻿vulnerabilities. Latent risk explores the often-neglected possibility of 
﻿vulnerabilities that are hidden in the short term. Exposure is articulated 
throughout the analysis. Response (i.e. ﻿SAI governance) is discussed 
throughout Section 7.1. 

Our four-stream model looks at direct contributions to GCR, how 
it could potentially trigger other high-impact risks, its contribution to 
﻿systemic risk in global critical systems, and its capacity for ﻿latent risk. 
Across each, we also consider potential feedback loops between ﻿SAI and 
each stream. Our four-stream model is as follows:

1.	 The first stream focuses on directly catastrophic impacts. A 
direct contribution refers to ways in which the impacts caused 
by SAI could alone plausibly cause sufficient mortality and 
morbidity without considering wider social knock-on effects. 

2.	 The second stream examines how ﻿SAI could interact with 
other high-impact hazards such as nuclear war. 

3.	 The third investigates how ﻿SAI could contribute to and be 
affected by systemic risk. Systemic risk focuses on how 
structural conditions and multiple small stressors can lead 
to widespread collapse or synchronous, reinforcing failures.11 
Indeed, complex systems can undergo rapid degeneration 
even without large shocks. They frequently organise into 
critical states in which small perturbations quickly cascade 
into calamity.12 

4.	 The final stream focuses on ﻿SAI’s ﻿latent risk. Latent risk focuses 
on deciphering how SAI could pose threats that manifest 
under post-catastrophe conditions, such as in the aftermath of 
societal collapse. 

Together, these different factors provide a comprehensive framework for 
comprehending how ﻿SAI could raise or lower overall levels of GCR in the 
world. The framework is intended to be a first step to risk comparison, in 
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this case ﻿climate change and ﻿SAI. These streams echo the channels of risk 
discussed in “Climate Endgame”.13 This helps make any risk-risk comparison 
easier. While the framework is extensive our application is limited. Due to 
time and resource constraints we only explore the most well-evidenced and 
likely risk channels, leaving others relatively untouched, such as the impact 
of ﻿SAI on the likelihood of biologically engineered pandemics. 

Historically, comparison between the two has been a rhetorical device 
to justify ﻿SAI. This is by no means a straight-forward juxtaposition since 
the two interact (for example, through mitigation deterrence: actors may 
be less open to ambitious emissions reduction if there is a “technofix” on 
the horizon14) and any analysis hinges on subjective judgements about 
climate sensitivity, ﻿tipping points, adaptive capacity, and the likelihood 
of international cooperation. There is also the issue of which precise 
baselines should be used for comparison:15 what should climate change 
or ﻿SAI be specifically compared against? In addition, how should the 
two be compared? Given the high uncertainties for both ﻿climate change 
and ﻿SAI, is a Maximin analysis of the “better” worst case a prudent or 
viable approach? Given these difficulties, we do not look to provide a 
definitive answer or quantitative analysis. Ultimately, we are not just 
comparing two different sets of risks, but two separate Earth system 
﻿states16 with different winners and losers. Navigating these entangled 
﻿risk analyses is an area for future analysis, but analysis that this chapter 
can hopefully inform. 

Nonetheless, any public deliberation and democratic decisions need 
to rest on comparable evidence and information. Any action is bettered 
by risk assessment, even if it is always mired in ﻿uncertainty. This article 
provides an initial and incomplete basis for informing such discussions. 
Imperfectly mapping out risk trade-offs is preferable to sleepwalking17 
into a dangerous future. 

3. Directly Catastrophic Impacts: Ecological Blowback?

Could SAI lead to directly18 catastrophic ecological impacts? Existing 
studies highlight a raft of potential negative consequences. But the 
specific ﻿nature of these impacts, and their contributions to catastrophic 
outcomes, depends on the specific ﻿SAI implementation. This is an issue 
of high ﻿uncertainty, particularly regionally. 
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The projected local ecological effects of ﻿SAI are mixed and ﻿uncertain, 
depending on the specific analytical approach and specific ﻿SAI 
deployment. Monsoon areas would likely face a drop in precipitation 
under large scale SRM,19 but this focuses on SRM in the abstract and may 
not be fully applicable to ﻿SAI. Many regions could face a seasonal under- 
or over-compensation in rainfall (compared to a high warming average 
(RCP 8.5) from 2010 to 2030, and assuming ﻿SAI is implemented to mask 
five degrees of warming).20 Effects on hydrological systems would be 
regionally ﻿diverse and ﻿uncertain due to potential changes in nonlinear 
variables including surface runoff, evapotranspiration, rainfall levels, 
and distribution.21 These fine-grained changes in weather could then 
affect vegetation. Plant communities could transform their structure, 
traits, and geographical range, particularly under larger swifter ﻿SAI 
deployments.22 While SAI might offer salvation to climate vulnerable 
vegetation it will depend on deployment timing. Some communities may 
already be committed to at least local extinctions before ﻿SAI is deployed. 
﻿SAI would likely result in ecological trade-offs with some communities 
benefitting and others suffering. The exact ﻿nature of these trade-offs 
is uncertain and needs further study.23 The key theme here is that SAI 
would likely have a range of impacts on many ecological systems. But 
how these would play out is highly ﻿uncertain, particularly at regional 
scales. Impacts hinge on the inherent uncertainties within complex 
ecological systems, varied comparative baselines, and the specific ﻿SAI 
deployment. 

The overall direct impacts of ﻿SAI, while ﻿uncertain, do not currently 
seem to constitute a catastrophic threat. Whether ﻿SAI would cause greater 
risks in terrestrial, freshwater, marine systems than ﻿climate change is 
unclear and depends on ﻿SAI’s specific deployment configuration. Higher 
levels and swifter deployment of ﻿SAI would mean greater potential 
for disastrous impacts.24 Additional considerations like seasonal25 or 
hemispheric26 deployment further affect potential impacts. 

There is a paucity of research on SAI impacts,27 particularly so for 
catastrophic or worst-case impacts. This has been the case for climate 
﻿modelling literature in the past as well.28 Climate modelling is often an 
exercise in “betting on the best case”.29 Others have noted this idealistic 
tendency for SAI modelling:30 for example, limiting SAI use to only 
halving warming31 or limiting SAI deployment to spring.32 These idealised 
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approaches in theory could reduce negative impacts associated with 
﻿SAI. Yet their likelihood is questionable due to optimistic assumptions 
of multi-decadal international cooperation (see Section 5.2). 

The possibility of dangerous ecological tail-risks depends on the level 
of cooling. Initial game theoretic research indicates the possibility of 
overcooling if SAI is pursued by uncoordinated actors.33 Negative impacts 
which are projected to be relatively minor in existing studies — for example, 
sulphate deposition impacts on terrestrial ecosystems34 — may become 
major ecological issues if ﻿SAI is deployed to far more of an extent than 
envisioned. Similarly, a poor choice35 of aerosols could result in large-scale 
ozone depletion.36 It is unclear whether, in these extreme cases, biophysical 
impacts would revert to their pre-﻿SAI ﻿state once ﻿SAI is removed. Modelling 
on “worst” cases is thus critical in informing ﻿SAI’s desirability. Exploring 
uncoordinated scenarios with the (simultaneous) use of different aerosols, 
different desired extents of cooling, and implementation by a small club, 
would all be helpful complements to existing idealised ﻿modelling scenarios. 

Regardless of how developed our understanding on ﻿SAI impacts 
become, there will always be inherent ﻿uncertainty. When dealing with a 
﻿complex system like the climate there is always the chance that a black 
swan is lurking in the dark. 

Some commentators have downplayed the potential of unknown 
impacts due to the availability of historical analogues, namely historically 
severe volcanic eruptions.37 Improvements in modelling, a gradual 
implementation, and a cessation if unacceptable negative impacts are found 
could also lessen the likelihood of an unforeseen catastrophic ﻿tipping point. 

None of these reasons are causes for comfort. Modelling, regardless 
of improvements, may simply be incapable of capturing rare tipping-
points and is not intended to accurately predict or foresee non-rational 
political dynamics.38 In addition, a gradual rational phase-in and phase-
out relies on optimal governance conditions. Overly rapid deployment 
due to “free-driving”39,40 or overly slow phase-out due to technological 
or infrastructural lock-in41 are entirely plausible. Moreover, SAI 
impacts may also not follow the pathway of historical analogues. The 
core rationale of ﻿SAI is to manufacture the cooling effect of a ﻿volcanic 
eruption in a “safe” manner, not replicate ﻿volcanic processes. Deviance 
from historical analogues is especially a possibility if the choice or mix 
of aerosol is radically different. This is particularly the case since ﻿climate 
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change and human-pressures are already pushing ecological systems 
into novel states.42 SAI would push systems into further novel states that 
make unseen ecological responses likely.43 

Our understanding of both Earth systems and the likely contours of 
deployment are too weak for us to rule out a potentially catastrophic 
form of ecological blow-back. For now, the literature points to ﻿SAI having 
numerous impacts. But none seem remotely capable of being a GCR, 
particularly if ﻿SAI deployment were limited. Nonetheless, the spectre of 
an unforeseen ﻿tipping point in the Earth’s climatic system remains.

4. Interactions With Other Global Catastrophic 
Hazards (GCHs) 

The impacts of ﻿SAI, or any other catastrophic risk, should not be 
assessed in isolation.44 Different catastrophic hazards45 have interactions. 
One could potentially trigger another and/or worsen its effects. Climate 
﻿hazards, for example, have been shown to compromise governments’ 
ability to provide effective responses to COVID-19.46 The potential for one 
global shock to ignite and amplify another has previously been dubbed 
“double-catastrophes”.47 Baum, Maher Jr. and Haqq-Misra (2013) 
suggest that this could be the case if nuclear ﻿war or a pandemic were 
to disrupt an ﻿SAI system, leading to abrupt ﻿termination shock. GCHs 
which are simply a matter of probability, like extreme space weather or 
a ﻿volcanic eruption, may also coincide through pure bad luck. 

In this section we consider both a broader array of ﻿hazards and how 
﻿SAI could trigger and interact with them. This will not be an exhaustive 
comparative analysis of all possible GCHs. Instead, we focus on ﻿hazards 
that have clearly established causal relationships, relatively well-developed 
literatures, and some empirical track record of their impacts. Our analysis 
suggests that the possibility of ﻿SAI sparking other GCHs are tenuous. 
﻿SAI could only plausibly contribute to large-scale conflict and potentially 
nuclear ﻿war. The possibilities of ﻿SAI exacerbating other GCHs are more 
concerning. ﻿SAI has the worrying ability to significantly heighten the 
impacts and mortality of any global ﻿catastrophe due to ﻿termination shock. 
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4.1 Volcanic eruption

A large ﻿volcanic eruption would demand rapid ﻿SAI adjustments. While 
severe overcooling seems unlikely (the cooling of ﻿SAI and ﻿volcanic 
winter are not additive),48 SAI should be rapidly scaled down in a matter 
of weeks.49 Laakso et al. (2016) assume a relatively thick SAI injection 
(offsetting roughly a doubling of carbon dioxide from preindustrial 
levels). The prudent course of action for thinner ﻿SAI is unclear. However, 
the ﻿SAI adjustment in a ﻿volcanic future is not simply one of scale down. 
﻿SAI injection may need to increase in the opposite hemisphere to the 
﻿volcanic eruption to ensure a more uniform global temperature50 (a 
high temperature variance across hemispheres can have severe adverse 
impacts on precipitation and drought dynamics). 

Adjusting the ﻿SAI level may seem straight-forward but depends on 
an informed, rapid political response. There are reasons to doubt this 
would be forthcoming. First, the technical demands may prove too 
much for cumbersome domestic and multilateral politics. These include 
potentially politically vexing dilemmas over the balance between scaling 
﻿SAI up and down on different hemispheres, whether to inject ﻿SAI at new 
locations or “thicken” existing deployments,51 or whether SAI should be 
scaled down at all. A second and novel addition is that a ﻿volcanic eruption 
would not solely affect temperature. Many pinch points of global supply 
systems are near active ﻿volcanic areas. Even modest ﻿volcanic eruptions 
could lead to disruption and catastrophic economic system collapse.52 
The difficulty of coordinating regional ﻿SAI adjustments would be 
compounded by sub-optimally functioning supply systems and general 
economic and political chaos.

While the interactions between a ﻿volcanic eruption and ﻿SAI currently 
seem to have only modest direct contributions to catastrophic risk, the 
highly political decisions of a ﻿volcanic-﻿SAI world may lead to political 
ruptures and ineffective ﻿SAI governance. 

4.2 Space weather 

Solar flares, coronal mass ejections, and associated solar radiation and 
geomagnetic storms, can lead to widespread damage to terrestrial, 
avionic, and space ﻿infrastructure. The fear for ﻿SAI is that a “black 
sky” event could disrupt and knock out critical ﻿SAI ﻿infrastructure. Yet 
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there have been no attempts thus far to investigate ﻿SAI-space weather 
interactions. We examine ﻿SAI interactions with an Earth-bound space 
weather event roughly on par or worse than the 1859 Carrington Event 
— the benchmark for extreme space weather events.53 A current-day 
Carrington Event would likely lead to widespread electrical failure and 
disruption for multiple months at minimum, potentially years.54 

Extreme solar events are difficult to accurately and timely ﻿forecast. 
They are essentially random events55 which provide little forewarning. 
Solar radiation can travel at such high speeds that an extreme coronal 
mass ejection would likely reach Earth in less than a day. Other radiation 
and energised particles travel at or close to lightspeed — eight minutes 
to reach Earth. Even with the earliest detection possible there would be 
little response time.56 It would be a late flinch to an oncoming blow. 

The impacts of extreme space weather events are vast. Aviation, 
satellite, and general electronic ﻿infrastructure are especially ﻿vulnerable. 
Energised particles can affect memory cells — for example, changing a bit 
from a 1 to 0 and vice versa — that lead to erroneous commands or overall 
hardware failure.57 Global navigation and communication systems would 
experience disruption and downtime that could last several months 
(alternative navigation systems, like the US Alternate Position Navigation 
and Time programme, may still be affected by electrical damage).58 Aircraft 
crew would have greatly limited airtime due to limits of safe radiation 
﻿exposure.59 Flights at higher altitudes and closer proximity to the Earth’s 
poles would be unlikely to continue.60 The use of automated aircraft would 
be compromised by widespread electrical and avionic damage. Especially 
alarming is that ﻿SAI would likely depend on ﻿vulnerable aviation, satellite, 
and general electronic ﻿infrastructure for deployment, monitoring, impact 
attribution determination, ﻿calibration, and modulation. 

Impacts of space weather events are not limited to human 
﻿infrastructure. Substantially increased UV output can influence the 
Northern Hemisphere jet stream, ozone production (and ozone UV 
absorption and warming), and precipitation patterns.61 These systems, 
particularly precipitation, are the same systems that ﻿SAI is likely to 
greatly affect. Interaction between these impacts is currently unclear. 

These disruptions appear enough to halt even a robust ﻿SAI system. 
Even with high uncertainties of potential infrastructural impacts62 and the 
﻿nature of the event itself,63 the limited evidence so far indicates that SAI 
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﻿infrastructure would be ﻿vulnerable and ﻿exposed to damage, thus leading 
to ﻿termination shock if ﻿SAI was sufficiently thick (see Section 6). In the 
aftermath of an extreme space weather event, continued implementation 
or preservation of ﻿SAI ﻿infrastructure would have to compete for limited 
government attention. Damage would be widespread and international 
— ranging from railway failure64 to power failure65 to failure of satellite 
﻿infrastructure.66 Governments and resources would be stretched thin 
and ﻿SAI reimplementation may be neglected. An extreme space weather 
event could lead to severe economic and infrastructural shocks67 that 
make continued ﻿SAI deployment infeasible. At worst, widespread power 
failures could lead to ripple effects across food, health, and transport 
systems that extend recovery time potentially into decades, driving 
modern societies back to a more fractured pre-electronic state.68 It is 
unclear how SAI, with its high technical and information demands,69 
could continue under these conditions. Troublingly, mitigation options 
are currently limited and highly depend on future (but relatively well-
known) scientific and engineering solutions.70 Considering the speed of 
space weather events, ﻿SAI ﻿infrastructure would have to be built to be 
resilient (with ﻿technology which does not currently exist) from the offset. 

﻿SAI is ultimately highly ﻿vulnerable to extreme space weather events. 
Widespread electrical damage would compromise ﻿SAI redeployment, 
making a ﻿termination shock highly likely and worsening the already 
catastrophic impacts of an extreme space weather event. 

4.3 Nuclear weaponry

﻿SAI would likely worsen any ﻿nuclear winter and our recovery from it. 
A nuclear ﻿war could occur due to either an accidental strike leading to 
escalation, or a full-blown exchange. Even a relatively smaller conflict 
between Pakistan and India would have global ramifications. The 
background risk of incidental or inadvertent nuclear deployment is 
present unless there is total nuclear disarmament.71 In addition to nuclear 
winter, the physical blast, ionising radiation, and electromagnetic pulse 
(EMP) would all contribute to widespread and severe damage of 
electronic infrastructure,72 including SAI infrastructure. Indeed, EMPs 
are similar in effect to the “black-sky” events discussed in Section 4.2. 
This leads to two key concerns. The first is the combination of ﻿SAI 
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cooling with ﻿nuclear winter conditions, the second is the grim mixture 
of nuclear cooling combined with ﻿termination shock.

The combination of ﻿SAI’s existing cooling and additional ﻿nuclear 
winter would likely lead to short term overcooling, followed by medium- 
or long-term overheating due to termination shock.73 It could be global 
frost followed by global furnace. Alternatively, there may be the potential 
for ﻿SAI and ﻿nuclear winter layering to spark ﻿non-linear or unexpected 
cooling effects. This is an area that justifies further study. There is 
﻿modelling on the impacts of a nuclear detonation, comparison of nuclear 
and climate threats via the “climate-nuclear nexus” (Scheffran et al., 
2016), and ﻿modelling on the impacts of ﻿SAI deployment and ﻿termination 
shock. Yet so far nothing integrates these two separate bodies of 
knowledge. The oversight is interesting given the entangled histories of 
climate science and nuclear weapons research.74 For now, the interactions 
between ﻿nuclear winter and ﻿SAI remain neglected and our analysis here 
is hence provisional. In any case, such rapid swings in global temperature 
would be unprecedented for the Earth system and humanity. 

A key question is whether a disrupted ﻿SAI system could be revived 
during ﻿nuclear winter to prevent a ﻿termination shock summer, and 
whether ﻿SAI was masking sufficient warming for ﻿termination shock 
to occur (see Section 6). But there also are reasons to believe that the 
re-establishment of an ﻿SAI system would not be able to occur during 
the buffer period in the wake of a nuclear cataclysm. First, ﻿technological 
damage may be so severe that timely deployment is impossible. Backup 
﻿infrastructure like aircraft (and associated supporting ﻿infrastructure 
such as air traffic control) may be damaged beyond repair or be 
grounded for security purposes. Second, political and policy attention 
would likely be focused on other post nuclear issues, such as disaster 
recovery and the creation of alternative food systems. As with other 
disasters, governments would be stretched thin and may prioritise these 
more short-term issues. Lastly, a post-nuclear world would likely exhibit 
a lack of international cohesion that is seen as an enabling condition 
for effective SAI.75 Discussions over SAI have already been deadlocked.76 
It seems unlikely that a world of post-conflict lessened trust would be 
more conducive to speedy decision-making. Different countries may 
drop out of implementation, further complicating ﻿SAI deployment 
configurations, possible regional impacts, and concordant policy 
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responses. Disagreement over resource allocation is likely to arise, as is 
the case for many disaster recoveries.77 

The presence of thick ﻿SAI greatly increases the potential consequences 
of nuclear warfare, and vice versa. The rapid temperature swings 
involved with a ﻿nuclear winter and ﻿termination shock summer would 
likely lead to ecological disaster, and a chaotic post-nuclear world would 
not likely reimplement ﻿SAI in a timely sensible manner. 

4.4 Pandemics

A pandemic that reaches the level of a GCR could be enough of an 
economic or population shock to sever an SAI system.78 Whether the 
system could be reactivated during the buffer period would depend 
on both the severity as well as the length of the pandemic. COVID-19 
provides a chilling reminder that ﻿states are not rational nor necessarily 
cooperative during a disease disaster. COVID-19, a far cry from being 
a GCR, has spawned fragmented responses and cases of both vaccine 
nationalism and vaccine diplomacy. Such multilateral behaviour does 
not engender confidence that a pandemic with a significantly higher 
mortality rate would lead to survivors coolly and collectively reactivating 
an ﻿SAI system whilst dealing with the outbreak. Other issues, like keeping 
healthcare systems afloat, would likely be an overwhelming priority. 
With resources and capacity stretched thin, ﻿SAI may be neglected. A 
pandemic would be a severe shock to political and economic systems 
that may preclude continued ﻿SAI use, not least rational, well-governed, 
well-resourced ﻿SAI use. Whether this risks ﻿termination shock depends 
on the amount of warming masked. 

There are also reasons (albeit speculative) to believe that ﻿SAI could 
contribute to a pandemic. ﻿SAI induced temperature changes and 
﻿uncertain regional climatic effects can alter disease transmissions.79 This 
could in turn affect pandemic dynamics. As with general ecosystem 
impacts (Section 3), a larger and quicker ﻿SAI deployment can be expected 
to have more severe impacts. Critical nodes in urban and health systems 
may become ﻿exposed to diseases that are beyond typical immunity or 
resistance (see Section 5.3 more on ﻿SAI-health interactions). This could 
be the spark for a pandemic spread, particularly if decision-makers 
are unprepared to make early and rapid response measures. However, 
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the most worrying (but thus far neglected) concern would be effects 
on animal populations. Similar concerns of low or lapsed immunity or 
resistance would apply to animal populations and new disease vectors. 
But animal populations would lack similar healthcare systems to keep 
disease spread at bay. Many contemporary pandemics have resulted 
from cross-species spillover,80 including the 2009 Swine Flu Pandemic 
from pigs and birds, and the 2013–2016 Ebola Epidemic and COVID-
19 Pandemic from bats. Altered animal disease dynamics, particularly 
those stemming from unpredictable regional ﻿SAI impacts, may increase 
the frequency and severity of future pandemics. 

5. The Systemic Risks of Climate Engineering 

Both previous societal collapses and disasters in the modern world are 
marked more by the accumulation of many stresses leading to failure, 
rather than single abrupt shocks destroying systems.81 Seemingly 
modest stressors can ﻿cascade to ﻿catastrophe. This section analyses the 
potential of ﻿SAI to create and be impacted by biophysical and political 
stresses which contribute to global ﻿systemic risk. 

The world currently exists in a deeply interconnected, and increasingly 
homogenous state which is prone to systemic risk.82 One ship blocking 
the Suez Canal in March 2021 led to losses of roughly $6–10 billion.83 
More serious stressors could lead to far more severe consequences. The 
economic and political ﻿state of the world would be central in determining 
whether risk ﻿cascades. It is unclear how ﻿SAI could or would adjust the 
structure of the globalised economy. Hence, instead we focus on a few 
critical systems that ﻿SAI might be expected to impact and where there 
have been initial attempts to gather evidence: agriculture, health, and 
international politics.84 SAI would likely not alter any of these system 
structures, but would rather aggravate existing systemic ﻿vulnerabilities. 

5.1 Agriculture 

﻿SAI’s effects on temperature and precipitation distributions would 
likely affect agricultural systems. The precise ﻿nature of these impacts 
are unclear.85 For example, some studies have shown that the low 
temperature, high carbon dioxide environment of a SRM deployment 
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might increase yields: maize yields may increase in China,86 as could 
overall global yields of maize, wheat, and rice.87 On the other hand, 
solar dimming might reduce yields of groundnut in India88 or offset 
benefits of reduced temperature.89 These effects would all further differ 
across crop and area. The differing approaches to analysis (Xia et al. 
(2014) focus on SRM to offset a 1% increase in carbon dioxide from 
preindustrial levels for 50 years, whereas Pongratz et al. (2012) focus on 
﻿SAI masking carbon dioxide concentrations of 800 ppm) as well as use 
of outdated equatorial injection in these studies (see Section 7.1) make 
clear conclusions difficult to discern. The main point is that ﻿SAI would 
affect agriculture, but the precise impacts are unknown. 

Regardless, the sensitivity of these key staple crops alone is a cause 
for concern. Small variations in yields of staple crops could induce 
disproportionate price fluctuations and ﻿cascades into socio-political 
violence, particularly in areas with political instability and weaker 
governance.90 Additional uncertainties with attribution between SAI 
and agricultural yields could compound potential political difficulties. 

Even in the case that ﻿SAI provides agricultural benefits, these are 
likely to be marginal if other issues affecting agricultural productivity, 
such as habitat loss and soil degradation, continue unabated.91 An SAI 
high carbon dioxide, low sunlight world would also require additional 
adaptation on the part of agricultural actors. This does not look likely 
given agricultural adaptation to ﻿climate change has so far only been 
modest.92 Large-scale changes in yield and precipitation are likely to 
create at least short-term food insecurity. There is evidence that existing 
﻿population density and economic growth are closely tied to the existing 
climate niche. The narrow climatic envelope of ∼13 °C has provided 
beneficial environmental conditions within which most humans and 
societies have tended to historically cluster.93 Our agricultural systems 
almost certainly are similarly tied to this niche, and any sudden change 
at a global level is likely to affect short-term yields and prices. 

5.2 Politics 

﻿SAI could feasibly spark conflict and instability. There are already some 
emerging empirical links between food price shocks and socio-political 
violence. Moreover, the very act of undertaking ﻿SAI could be grounds 
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for dispute. States may look to develop their own ﻿SAI capabilities before 
others do, creating more extensive backup ﻿infrastructure to avoid 
dependencies on others, or even construct counter-SAI capabilities.94 
Existing political order may become undone by SAI.95 A novel and 
interesting example could be high historical emitters like the US using the 
Common but Differentiated Responsibilities and Respective Capabilities 
principle as an instrument to assert ﻿SAI control or leadership (“we are 
mostly responsible for ﻿climate change, therefore it is ‘just’ that we lead 
the response”). Manipulation of the climate could become a new frontier 
for political conflict or even warfare. Different cross-boundary impacts 
on different regions would create large sets of winners and losers, 
alongside questions of attribution96 and compensation. Whether such 
disputes could snowball into conflict is beyond prediction. Nonetheless, 
it is reasonable to say that unless enacted as altruistic, cooperative 
endeavour over multiple decades, the project of ﻿SAI would load further 
pressure onto existing international tensions. But even in the most 
altruistic cooperative scenarios, there may still be sub-national tensions 
in and/or between “donor” and “recipient” populations. 

There is also the possibility that politics would worsen ﻿SAI. ﻿SAI and 
politics is a two-way street. Political conflict can ﻿cascade to affect ﻿SAI 
deployment and its impacts. Previous studies have made a compelling case 
that the direct weaponisation of SAI is unlikely.97 High-impact uncertainties, 
management difficulty, low precision, and preferable alternative weaponry 
make ﻿SAI an unappealing instrument in ﻿state arsenals. However, this does 
not mean that ﻿SAI has limited military use. ﻿SAI may not have usefulness as 
a direct weapon, but can function as a support system or a threat. Indeed, 
early attempts at cloud seeding were used by the US military during the 
Vietnam War as a tactical weapon to extend the Monsoon Season and 
disrupt North Vietnamese supply lines (Operation Popeye). 

Another avenue for political dynamics to worsen a ﻿SAI deployment, 
and that has received relatively little attention, is via cyberwarfare. In 
May 2021, a ransomware cyber-attack forced a US fuel pipeline out of 
service. A $5 million ransom was paid to restore service.98 As a globally 
critical (and potentially highly politicised) piece of ﻿infrastructure, ﻿SAI 
would likely be a target for private or ﻿state actors. ﻿SAI deployment 
dependent on any software or advanced algorithmic system,99which 
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is likely given the high ﻿technological and informational demands of 
deployment,100 would be vulnerable to cyberattack. 

Cyberattacks do not need to come from external forces. For instance, 
the notorious 2000 Maroochy Cyberattack was from a disgruntled 
ex-employee.101 SAI would likely depend on a large workforce and have 
numerous reasons for controversy. 

These political dynamics would have decades to play out. A 
cooperative and benevolent deployment of ﻿SAI could crumble into chaos 
with a change in actor preferences (or vice versa). Politics and its broader 
conditions are likely to change substantially over coming decades. 
Interactions between future geopolitics, warming and emissions, and 
﻿technology are all nigh impossible to predict or even foresee,102 but 
would be of critical importance to ﻿SAI and its governance. Relying on 
one set of optimal political assumptions would be greatly unwise. 

5.3 Health

﻿SAI could negatively impact human health by both changing disease vectors 
and range (and therefore pandemics, see Section 4.4), and by undermining 
existing health system ﻿infrastructure. The regional variations of ﻿SAI’s 
impacts on temperature and other ecological factors would likely affect 
disease transmissions. ﻿SAI-induced reductions in monsoon rainfall may 
increase cholera risk,103 and temperature changes can affect transmission of 
vector borne diseases like malaria.104 Yet such health impacts are chronically 
understudied: currently only four papers focus on the health impacts of 
﻿SAI.105 The lack of coverage is significant since these studies have critical 
limitations, namely an assumption of equatorial injection (see Section 7.1). 
The impacts of other forms of deployment are largely unknown. Similarly, 
there is little research on the health impacts of exposure to SAI aerosols,106 
and the few quantitative assessments of mortality related to air quality and 
changes in UV exposure carry significant uncertainty.107

Despite these limitations, the research to date does point towards 
potential dangers. Alterations of disease transmission are especially 
important because diseases may reach populations which have lapsed or 
little immunity or resistance,108 or may have relatively weak or vulnerable 
public health systems. These critical nodes in health and urban systems, 
which otherwise would be less ﻿exposed, may amplify health risks and 
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impacts: an epidemic may be amplified to become a pandemic (Section 4.4). 
The ﻿uncertainty of ﻿SAI’s potential deployment configurations, associated 
impacts, and ﻿state of existing health systems means that early identification 
of different critical nodes would likely be difficult and insufficient. Overall, 
systemic effects between health and ﻿SAI currently seem modest and carry 
high ﻿uncertainty. However, they are not negligible. 

6. Latent Risk and SAI

Latent risk refers to risks that are dormant, but could become manifest 
during times of heightened societal ﻿vulnerability. The most obvious 
example would be the additional risks that arise in the aftermath of a 
collapse (widespread, significant, and enduring loss of life, political 
organisation and economic capital) or another global ﻿catastrophe, for 
example violent conflict over food and water. Latent risks are particularly 
important as they can provide one tangible way in which recovery from 
global shocks could be undermined and spiral towards extinction risk.109 
We have already dealt with these partly in Sections 3–5. In short, ﻿latent 
risk is perhaps the largest risk factor for ﻿SAI. ﻿SAI changes the ﻿nature of 
﻿climate risk by making the “likely” outcomes less severe, but making 
“less likely” (or “fat-tail”) outcomes substantially more severe. The risk 
of ﻿termination shock thickens the tail. Large amounts of ﻿SAI loading 
could create a precarious condition in which any sufficiently large global 
shock is likely to be compounded by a tumultuous ﻿termination shock. It 
is in these worst cases where ﻿SAI becomes clearly worse than worst case 
﻿climate change. 

While there is subjectivity as to what a “threshold” for ﻿termination 
shock would be, Parker and Irvine (2018) suggest a ﻿SAI cooling threshold 
of around 0.3 degrees, implying a termination of at least 0.15 degrees 
warming per decade. Kosugi (2013)110 puts the termination threshold at 
0.2 degrees, implying an ﻿SAI cooling threshold of around 0.4 degrees.

The speed of ﻿termination shock depends on the form of SRM. ﻿SAI 
has a half-life of approximately eight months (approximately half the 
levels of coolants would still be present after eight months) and warming 
would still take several years to reach its unmitigated levels.111 Depending 
on the amount of warming masked, ﻿SAI has a distinctly high ﻿latent risk 
due to ﻿termination shock. A temperature rise of six degrees in the space 
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of centuries would be an order of magnitude faster than the warming 
experienced during the Great Permian Dying.112 If experienced in a period 
of decades, it would be an order of magnitude faster still. Current warming 
rates are geologically unprecedented; this speed would be chillingly rapid. 

Critics have framed ﻿termination shock as an overblown problem for 
numerous reasons. These include that countries are unlikely to willingly 
reverse ﻿SAI, that there would be a sufficient buffer period to resume 
﻿SAI, and it is unlikely to be hiding a large amount of warming.113 These 
all seem to ﻿align with the inclination for both ﻿modelling and analysis of 
geoengineering to focus on the “best case”: that there would be sufficient 
cooperative governance and deployment of ﻿SAI, that there would be 
rational responses to any system lapse or shock, and that ﻿SAI would 
be used to only shave-off a small amount of warming.114 Yet, SAI is 
widely portrayed as an emergency response: it is most likely to be used 
in a worst-case high warming scenario, not a best-case limited warming 
one. Moreover, the likelihood of high-end warming, governance 
fragmentation, or another GCR occurring are all disarmingly large. 

The likelihood of a ﻿catastrophe curtailing ﻿SAI efforts and causing 
﻿termination shock is usually dismissed as very low. This is likely mistaken. 
We have covered some of these ﻿catastrophes in Section 4. While there is 
considerable ﻿uncertainty, the likelihood of a GCR in the coming centuries 
does not appear to be vanishing. Estimates for a large-scale space weather 
event over the next decade or so range from 0.46%115 to 20.3%.116 Estimates 
of the probability of nuclear ﻿war are few and vary, but one model of 
inadvertent conflict between the US and Russia using historical data put it 
at 0.9% per year.117 SAI could also be slowly scaled back as mitigation and 
CDR efforts increase.118 But this would likely require multiple additional 
decades which would (assuming no mitigation of other global threats) 
incur a higher likelihood of another ﻿catastrophe striking. 

A more compelling retort is that ﻿SAI could be reintroduced within 
years at a reasonable cost. Some have suggested that given that ﻿SAI 
could be run at >1% of the GDP of the G20 and hence even losses of 75% 
of GDP (an unprecedented economic disaster) would be insufficient to 
keep an SAI system deactivated.119 Such analysis overstates the coherence 
and rationality of ﻿states responding to crisis. The value of an extra three 
billion doses of COVID-19 vaccines would provide benefits of $17.4 
trillion, at a cost of around $18–120 billion.120 Yet vaccine production 
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remains chronically low. Even in far less dire circumstances we can 
clearly not trust decision-makers to take the optimal course of action. 

﻿SAI can be seen as one vast project to make the climate system more 
tightly coupled and synchronised with the global economic system. From 
a resilience perspective, such efforts are a liability. It makes it far more likely 
that the failure of one system will spill over into another, sparking ﻿non-
linear feedback loops that result in “synchronous failures”.121 There are 
of course ways to make such complex engineering systems more resilient 
and robust, namely via backups and redundancies. However, current 
economic incentives for efficiency (particularly via cost reduction), mean 
that strong redundancies are rarely in place. ﻿SAI redundancies specifically 
are likely to be expensive and thus inconsistently implemented.122 In any 
case, it is unclear what redundancies would be effective at making an ﻿SAI 
system ﻿catastrophe-proof. Making ﻿SAI resilient to natural disasters or 
﻿terrorist attacks seem relatively straight-forward,123 but the same cannot 
be said of a true global ﻿catastrophe. 

The inherent unknowns of highly complex ﻿technological systems 
also contribute to the possibility of ﻿termination shock. Highly ﻿complex 
systems, like SAI would be, are prone to “Normal Accidents”.124 Large-
scale accidents and disruptions are to be expected in sufficiently 
complex and tightly coupled systems. Unforeseen ﻿technological failures 
are simply a fact of life. 

While ﻿latent risk is a genuine concern, it is a danger for only the 
greatest threats on the horizon and the “thickest” ﻿SAI deployments. 
A true, dramatic, global calamity would be needed to both disable an 
﻿SAI system masking a large amount of warming and keep countries 
either preoccupied or incapable of reinstating it for several years. In this 
context, the risk comparison between ﻿SAI and ﻿climate change becomes 
clearer. ﻿SAI’s worst case outcomes through severe ﻿termination shock are 
worse than the worst cases of ﻿climate change. 

In Table 2 we summarise our analysis of direct impacts, GCH 
interactions, systemic risks, and ﻿latent risk.
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Table 2: Summary of ﻿SAI’s direct impacts, GCH interactions, systemic 
risks, and ﻿latent risk.

Contribution to 
catastrophic risk

Type of 
contribution

Nature of evidence 
base and ﻿uncertainty

Dependency 
on mode of 
deployment

Destabilising 
ecological 
systems 

Ecological 
Blowback

Limited evidence base 
and high ﻿uncertainty. 
Lack of study on 
worst-case ecological 
impacts. High regional 
variations and 
﻿uncertainty. 

High dependency. 
Direct ﻿SAI impacts 
vary with thickness 
and other injection 
variations. 

Volcanic eruption 
leading to 
political ﻿SAI 
difficulties

GCH 
Interaction

Limited evidence 
base. Study of ﻿SAI 
interactions with a 
﻿volcanic eruption is 
limited.

Medium 
dependency. 
Dependent on 
potential ﻿SAI 
supply routes, 
but also external 
political dynamics. 

Extreme space 
weather event 
damaging ﻿SAI 
and global 
electronic 
and power 
﻿infrastructure.

GCH 
Interaction

Limited evidence 
base. No specific study 
of the impact of an 
extreme space weather 
event on ﻿SAI. Varying 
estimations of space 
weather probability. 

Medium 
dependency. 
External ﻿SAI 
support systems 
are ﻿vulnerable. 
Thick ﻿SAI leads 
to more severe 
﻿termination shock. 

﻿SAI-﻿nuclear 
winter 
overcooling or 
nuclear frost-
termination 
furnace. 

GCH 
Interaction

Limited evidence base. 
Existing study on 
﻿nuclear winter effects 
and ﻿SAI effects, but 
nothing that studies 
interactions between 
both. 

Medium 
dependency. 
Dependent on 
external political 
dynamics. Thick 
﻿SAI leads to more 
severe ﻿termination 
shock. 

Political 
instability of 
a post-nuclear 
world on ﻿SAI 
redeployment 

GCH 
Interaction

Limited evidence base. 
Existing study on 
post-nuclear politics 
and ﻿SAI politics, but 
nothing that studies 
interactions between 
both.

Low dependency. 
Dependent on 
external political 
dynamics.
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Contribution to 
catastrophic risk

Type of 
contribution

Nature of evidence 
base and ﻿uncertainty

Dependency 
on mode of 
deployment

Pandemic leading 
to ﻿population 
or economic 
losses that make 
continued ﻿SAI 
infeasible. 

GCH 
Interaction

Limited evidence base. 
Limited study of ﻿SAI-
health intersections 
and no study of ﻿SAI-
pandemic interactions. 

Medium 
dependency. 
External pandemic, 
economic, and 
political factors 
are critical drivers. 
But thick ﻿SAI leads 
to more severe 
﻿termination shock.

﻿SAI weakening 
agricultural 
systems. 

Systemic 
Risk 

Limited evidence base 
and high ﻿uncertainty. 
Little study of ﻿SAI’s 
agricultural impacts 
and high regional 
variance is likely. 

High dependency. 
﻿SAI’s agricultural 
impacts are 
highly dependent 
on deployment 
configuration. 

﻿SAI sparking 
political conflict

Systemic 
Risk

Initial study of the 
political dimensions 
of ﻿SAI, but high 
﻿uncertainty of how 
these political effects 
would play out. 

Low dependency. 
Dependent on 
external political 
dynamics.

Political 
dynamics that 
compromise ﻿SAI 
safety

Systemic 
Risk

Low ﻿uncertainty 
that international 
geopolitics over 
a multi-decadal 
timescale is not ideal 
for optimum ﻿SAI 
governance. High 
﻿uncertainty and 
limited evidence base 
as to how specifically 
this would play out. 

Medium 
dependency. 
Political instability 
and conflict is core 
to the multilateral 
system, but 
﻿nature of uneven 
﻿SAI impacts and 
differing objectives 
contribute to 
political instability. 
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Contribution to 
catastrophic risk

Type of 
contribution

Nature of evidence 
base and ﻿uncertainty

Dependency 
on mode of 
deployment

﻿SAI affecting 
disease 
transmissions 

Systemic 
Risk 

Limited evidence base 
and high ﻿uncertainty. 
Limited study of ﻿SAI-
health intersections 
and highly dependent 
on external urban 
and health policy 
dynamics. 

Medium 
dependency. 
Thicker ﻿SAI 
more likely to 
affect disease 
dynamics. But 
external pandemic, 
economic, and 
political factors are 
primary drivers.

Termination 
shock

Latent Risk Limited evidence base 
and high regional 
﻿uncertainty of precise 
﻿termination shock 
impacts. But low 
﻿uncertainty that 
﻿termination shock 
would be catastrophic. 

High dependency. 
Thick ﻿SAI leads 
to more severe 
﻿termination shock.

7. Discussion: Building the Policy Boundaries for 
Climate Engineering

7.1 The means of deployment

Our analysis thus far has assumed a “default” deployment of optimal 
conditions of a global material approach to mitigate ﻿climate change. This is 
not necessarily the most likely scenario and the means of deployment and 
context will dramatically impact SAI’s catastrophic risk profile﻿. One of the 
critical variables to consider is the overall objective of a SAI deployment. 

There are ﻿multiple potential objectives of SAI deployment, ranging 
from ﻿temperature reduction (of different extents), precipitation impact 
management, to biodiversity conservation.125 These objectives will also 
depend on existing emissions reduction policies. There are also multiple 
potential “design” options for deployment configuration,126 ranging 
from deployment timing, extent, placement, to aerosol selection.127 The 
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extent of cooling for example not only depends on how much aerosol is 
released, but the height of injection in atmosphere (lower stratosphere 
injection produces more cooling).128 Much of the existing study on SAI 
assumes injection along the equator.129 Equatorial injection is the most 
efficient if the only deployment objective is to maximise Earth’s overall 
cooling. However, this would lead to high variance in temperature 
distributions, namely overcooling of the tropics and undercooling of 
poles.130 Impacts discussed in Section 3 also can change with a non-
equatorial injection — Arctic SAI, for instance, would have ﻿less of an 
effect on Monsoon precipitation.131 Across all these there are key caveats. 
Neatly framed and optimised objectives found in ﻿modelling will not 
necessarily be reflected in messy and contested real life preferences, nor 
will SAI necessarily perfectly result in desired “design” outcomes.132 

It is also important to consider that SAI may not be used solely to 
﻿respond to ﻿climate change. The multiplicity of potential SAI goals opens 
the door to hidden agendas,133 self-interest, and misuse. In addition, 
even if SAI is deployed under an ﻿idealistic scenario of climate altruism, 
there is no guarantee that this would persist. Considering that political 
preferences are unlikely to remain static over decadal timescales (see 
Section 5), SAI functions may slowly “creep”134 into currently unknown 
possibilities of misuse. Such “Function Creep” and potential misuse are 
highly understudied in current SAI literature.135 

Predicting or﻿ even foreseeing potential future SAI functions will 
forever be ﻿mired in ﻿uncertainty. This is part of why Function Creep is 
such a difficult policy problem. Initial study in this area for SAI highlights 
the potential to use SAI to “optimise” or create “designer climates”.136 
Actors may, for example, advocate for deployment configurations that 
lead to more favourable conditions for critical staple crops, especially 
in response to warming impacts. These decisions may be the product of 
misjudgement or misinformation on SAI’s causal ﻿nature. SAI may ﻿also 
be used to justify﻿ the continued existence of fossil fuel industries. This 
is a potential adverse incentive core to the “moral hazard” problem.137 
This could even create a new atmospheric political economy. The fossil 
fuel industry and other vested interests benefiting from the SAI system 
would have ﻿incentives to both use it as a way to slow decarbonisation 
and perhaps even thicken SAI deployment over time. This ﻿would 
heighten ﻿latent risk. Assuming SAI as a benign ﻿climate change ﻿response 
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is unwisely narrow. Other more sinister SAI uses, whether purposeful or﻿ 
inadvertent, are critical determinants of SAI’s desirability. 

There are ﻿many more SAI deployment options that are﻿ not currently 
well captured in extant governance literature. SAI risks for example 
take a ﻿drastically different form if Artificial Intelligence (﻿AI) is one of 
the central aspects of deployment design. With the vast amounts of 
information feedback and constant operational adjustments required,138 
an advanced deep reinforcement learning system may be used to 
manage SAI deployment.139 This would introduce a raft of new issues: 
for instance “black box“ opacity of decision processes140 or inappropriate 
generalisations of incomplete data.141 

Given the high variance of potential SAI objectives and potential 
﻿deployment configurations, a highly political, uncoordinated, and 
decentralised142 “Wild West” deployment scenario, with unclear direct 
impacts, is possible. States and private sector actors are not likely to find 
agreement on a single defined “set” of objectives, how they should be 
prioritised, and how these objectives should manifest in deployment 
configuration. These intensely political and self-interest driven 
considerations are likely key determinants of SAI deployment impacts, 
and ﻿should be priority areas for future governance research. 

The means of deployment for other GCHs also affect SAI risks. 
An ﻿intentional ﻿weaponised pandemic may intentionally leverage 
SAI dynamics, like changes in ﻿disease transmission via changes in 
temperature distribution, to target critical nodes in health and urban 
systems. Such potential for now is speculative, but ultimately plausible. 

7.2 Interconnections

Our analysis has focused on individual pathways for SAI to contribute 
to GCR. ﻿However, none of these are mutually exclusive. Each of the four 
steams overlap and feed into the same waterway. For instance, uni- or 
mini-lateral deployment of SRM systems could be driven by geopolitical 
distrust and conflict. This would likely be a world in which other GCHs 
are more likely, SAI deployment is less ﻿coordinated and damaging, 
critical systems are less resilient, and the world is less likely to quickly 
and effectively deal with a ﻿termination shock. 
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There is also an important intersection between systemic and ﻿latent risk. 
Most mechanisms that increase ﻿systemic risk will tend to raise ﻿latent risk as 
well. For instance, just in time delivery systems and tightly coupled systems 
with few back-ups, while efficient, are both more susceptible to shocks and 
can impede recovery. In Figure 1 we provide one brief attempt to map some 
of the linkages between different risks and factors in SAI deployment. More 
﻿interconnected systems mean a higher chance of synchronous failures, and 
SAI is likely to be a highly ﻿interconnected system. 

 Fig. 1: The SAI-GCR System.143

7.3 Building the Policy Boundaries

Analysis of catastrophic downside risks can help illuminate the 
contours of what “effective” SAI governance would do. This ﻿is a useful 
complement to the policy literature that has focused mostly on structure 
and architecture.144 We add to the knowledge on policy instruments by 
providing further detail on policy approach. 
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To effectively mitigate against the (limited) number of threats and 
systemic risks outlined in this chapter, SAI governance would have to 
be﻿ wide ranging, robust, and persist over decades. SAI and its backup 
﻿infrastructure would need to be built to be resilient to extreme space 
weather or nuclear EMP events. Effective SAI governance is also not 
﻿limited to SAI itself, but encompasses ﻿other policy areas like health, 
agriculture, ﻿AI, and energy. Ensuring ambitious emissions reductions 
and greenhouse gas removals would be needed to ensure SAI did not 
continue ﻿indefinitely. Effective SAI governance would also ﻿prevent future 
misuse and balance shifting preferences and multiple deployment goals 
in a just and ﻿inclusive manner. Governance arrangements to ensure 
SAI deployment or ﻿reimplementation in the wake of a major shock 
like a recession, pandemic, or nuclear attack would also be necessary. 
These would all be in addition to the herculean technical informational 
demands necessary for SAI deployment, which alone may﻿ be a larger 
undertaking than an IPCC report.145 This optimistically assumes that SAI’s 
climatic outputs can be ﻿clearly and cleanly measured, that there would 
be widespread international capacity for effective monitoring,146 and 
that this monitoring would also be resilient to critical shocks. Substantial 
advancements in climate science and observation, as well as additional 
international capacity building for monitoring and transparency, would 
be needed. All of these would then have to be maintained over the course 
of decades. 

These altogether represent an incredibly challenging governance task. 
The lack of success of the climate ﻿regime, with its similarly intense political 
and wide-ranging ﻿nature, does not inspire confidence in the feasibility of 
wide-ranging and long-term governance for an issue as political as SAI. 
Basic discussion over ﻿climate engineering as a whole has been stymied 
under the UN Environment Assembly.147 Future and more consequential 
SAI debate will be subject to ﻿more severe political hurdles. Even less 
complex and smaller scale governance arrangements, like COVID-19 mask 
mandates, have been mired in politicisation and competitive dynamics. 
A “mask” over the Earth, and its associated governance considerations, 
would face even tougher political challenges to effective implementation. 

What would happen if a SAI deployment went ahead ﻿without these 
governance safeguards? It could very well be the case that agricultural 
or health impacts of SAI are limited or even ﻿positive. A disaster like an 
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extreme space weather event may not happen in the decades where SAI 
is implemented. The stars ﻿of international politics could ﻿align and allow 
for a smooth SAI implementation and ﻿cessation. 

There is indeed no guarantee that the catastrophic pathways outlined 
in this chapter will materialise. But if they do, they would likely result 
in severe and cascading consequences. SAI has many extreme downside 
﻿risks. “Imperfect” SAI governance can be compared ﻿to living without 
health insurance. The extra safeguards and protection aren’t strictly 
necessary…until something goes wrong. Given what we know about 
the instability of international geopolitics, SAI with imperfect SAI 
﻿governance puts the world ﻿in a precarious position and introduces a 
climatic Sword of Damocles. The ultimate question becomes: are we 
willing to bet the climate that no ﻿catastrophe or systemic ﻿cascade will 
trigger SAI’s downside potential over ﻿the coming decades? 

In a world of imperfect safeguards, two interconnected options are 
available to alleviate catastrophic risks. The first option is thinner SAI 
deployment. Thin SAI has a ﻿lower risk of ﻿catastrophic ﻿termination 
shock, thus posing less of a threat even if triggered by another calamity 
or systemic ﻿cascade. The second option is to ensure ﻿diversity in the 
overall climate engineering portfolio. Reducing reliance on SAI would 
better allow for a ﻿thinner SAI deployment. Other climate ﻿engineering 
approaches, particularly those which are less ﻿technology based, would 
also not necessarily share the same ﻿vulnerabilities as SAI. Trees for 
instance are not﻿ ﻿vulnerable to extreme space weather. These would 
reduce the potential of an SAI termination, but ultimately﻿ would not 
completely remedy the political complications SAI would create.

There seem to﻿ be three major148 pathways moving forward. The first 
is living in a highly ﻿vulnerable scenario of imperfect SAI governance 
— the “Damocles ﻿Pathway”. This is clearly undesirable. The second is 
living with well-governed SAI that will not exceed policy﻿ boundaries 
of ﻿catastrophe — the “Miracle Pathway”. This seems infeasible. The 
final middle ground is to accept the inevitably imperfect contours of 
SAI governance, but greatly ﻿limit the extent of SAI deployment — the 
“Limited ﻿Pathway”. But this again would rely on robust and resilient 
governance and is still ﻿vulnerable to geopolitical shocks. SAI may by 
thickened or thinned﻿ along changing political tides. 
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A core conclusion here is that there is little use in asking whether SAI 
is a GCR or not. It depends﻿ on the level of loading and wider geopolitical 
landscape. All risks, especially ﻿latent risk, will increase with greater 
loadings and political conflict. This is a critical insight for the wider 
study of GCRs. A risk cannot be judged in a vacuum. Its severity will 
inevitably be determined by the scenario and system in which it unfolds.

8. Conclusion: The Frying Pan and the Flame

We map the different contributions of SAI to Global Catastrophic Risk﻿ 
(GCR). The direct risks through irreversible extreme ecosystem impacts 
are currently unknown. No mechanisms for this have been identified. 
But extreme ecosystem impacts cannot be confidently ruled out given the 
﻿nature of the Earth systems. SAI could have numerous diffuse﻿ impacts on 
critical systems such as agriculture, politics and health. These currently 
appear modest, but we cannot rule out the possibilities of systemic ﻿cascades 
or synchronous failures. It appears unlikely that SAI would trigger any 
other ﻿calamitous ﻿hazards unless it ignites geopolitical conflict between 
great powers. Instead, SAI’s greatest contribution is ﻿through ﻿latent risk: 
the ability for ﻿termination shock to significantly worsen any other GCR. 
For each of these areas the evidence base is significantly underdeveloped. 

Is SAI worse than the initial ﻿problem of ﻿climate change? The 
question for now is largely unanswerable and lies outside the scope 
of our analysis. This chapter represents a first step in understanding 
the multitude of risks of SAI. But critical gaps in ﻿understanding of 
both high-end warming and SAI remain. The climate ﻿comparison also 
depends on specific details, such as level of warming, ﻿state of politics, 
and availability of alternatives to SAI (such as rapid large-scale ﻿carbon 
dioxide removal). SAI is also deeply dependent on﻿ governance and 
the level of use. A constrained use of SAI with coherent, coordinated 
﻿governance would most likely be benign and beneficial. Yet it is in a 
scenario of extreme warming, political fragmentation, and a search 
for an escape clause that SAI use appears most likely. ﻿Such thick and 
uncoordinated use of SAI is unwise and an ﻿inappropriate precautionary 
alternative. We would face a planetary Sword of Damocles. 
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