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2 Choice

2.1 Choice and rational choice

In the previous chapter we discuss an individual’s preference relation, a formal
concept that describes her mental attitude to all relevant alternatives. We now
develop a formal tool to describe an individual’s behavior. The two concepts,
preferences and choice, are building blocks of the economic models we develop
later.

Recall that the notion of a preference relation refers only to the individual’s
mental attitude, not to the choices she may make. In this chapter, we describe a
concept of choice, independently of preferences. This description specifies her
decision in any possible choice problem she may confront within the context
we are modeling. Suppose, for example, that we want to model a worker who
is applying for a job. Then a complete description of her behavior specifies not
only which job she chooses if all jobs in the world are open to her, but also her
choice from any subset of jobs that she might be offered.

Formally, let X be the set of all the alternatives an individual might face. A
choice problem is a nonempty subset A of X , from which the individual chooses
an alternative. A choice function describes the individual’s choice for every pos-
sible choice problem.

Definition 2.1: Choice problem and choice function

Given a set X , a choice problem for X is a nonempty subset of X and a
choice function for X associates with every choice problem A ⊆ X a single
member of A (the member chosen).

Usually in economics we connect the individual’s behavior and her mental
attitude by assuming that the individual is rational in the sense that

• she has a preference relation over X
• whenever she has to make a choice, she is aware of the set of possible alter-

natives
• she chooses an alternative that is best according to her preference relation

over the set of possible alternatives.
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18 Chapter 2. Choice

Note that this model of rationality does not make any assumptions about the
content of the individual’s preferences. Her preferences might be “irrational” in
the everyday sense of the word and be inconsistent with what she, or we, would
consider to be her well-being. For example, an individual who chooses an alter-
native that causes her the greatest pain (measured in some way) is rational in the
sense we have defined.

If the preference relation of an individual is represented by the utility func-
tion u , then the individual acts as if she maximizes the function u under the
constraint that x ∈ A. Formally we write her problem as

max{u (x ) : x ∈ A}.

Note that if two individuals have two different strict preference relations and,
given any set A choose alternatives in A that are best according to these prefer-
ence relations, then their corresponding choice functions differ. That is, if for
two alternatives x and y one individual prefers x to y and the other prefers y to
x , then the choice function of the first individual assigns x to the problem {x , y }
and the choice function of the second individual assigns y to this set.

2.2 Rationalizing choice

Human beings usually do not consciously maximize a preference relation when
they make decisions. The standard justification for modeling individuals as ra-
tional is that although individuals rarely explicitly choose the best alternatives
according to their preference relations, their behavior can often be described as
if they make choices in this way. Individuals do not have to be aware of their
preference relations. The assumption that they maximize some preference rela-
tion is appropriate as long as we can describe them as if they behave in this way.
Accordingly, we make the following definition.

Definition 2.2: Rationalizable choice function

A choice function is rationalizable if there is a preference relation such that
for every choice problem the alternative specified by the choice function
is the best alternative according to the preference relation.

Notice that this definition requires that the alternative chosen from any set is
the unique best alternative. If we were to require only that it is a best alternative,
then every choice function would be rationalizable by the preference relation in
which all alternatives are indifferent. We return to the issue in Section 5.5.



2.2 Rationalizing choice 19

Example 2.1

Let X = {a ,b , c }. The choice function that assigns a to {a ,b , c }, a to {a ,b},
a to {a , c }, and b to {b , c } is rationalized by the preference relation ¼ for
which a � b � c . That is, we can describe the behavior of an individ-
ual with this choice function as if she always chooses the best available
alternative according to ¼.

On the other hand, any choice function that assigns a to {a ,b}, c to
{a , c }, and b to {b , c } is not rationalizable. If this choice function could be
rationalized by a preference relation ¼, then a �b , b � c , and c � a , which
contradicts transitivity.

Of the 24 possible choice functions for the case in which X contains
three alternatives, only six are rationalizable.

We now give some examples of choice procedures and examine whether the
resulting choice functions are rationalizable.

Example 2.2: The median

An individual has in mind an ordering of the alternatives in the set X from
left to right. For example, X could be a set of political candidates and the
ordering might reflect their position from left to right. From any set A of
available alternatives, the individual chooses a median alternative. Pre-
cisely, if the number of available alternatives is odd, with a 1 < a 2 < · · · <
a 2k+1 for some integer k , the individual chooses the single median a k+1,
and if the number of alternatives is even, with a 1 < a 2 < · · ·< a 2k , then the
individual chooses a k , the leftmost of the two medians.

No preference relation rationalizes this choice function. Assume that
A contains five alternatives, a 1 < a 2 < a 3 < a 4 < a 5. From this set, she
chooses a 3. If she has to choose from {a 3, a 4, a 5}, she chooses a 4. If a
preference relation ¼ rationalizes this choice function then a 3 � a 4 from
her first choice and a 4 � a 3 from her second choice, a contradiction.

Note that the individual’s behavior has a rationale of a different type:
she always prefers the central option. But this rationale cannot be de-
scribed in terms of choosing the best alternative according to a prefer-
ence relation over the set of available alternatives. The behavior can
be rationalized if we view the set of alternatives to be the positions
Y = {median,one left of median,one right of median,two left of median,
two right of median}. Then the first choice problem is Y and the second
choice problem is {one left of median,median,one right of median}. The
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preference relation ¼ given by

median� one left of median� one right of median� . . .

rationalizes the choice function.

Example 2.3: Steak and salmon

Luce and Raiffa (1957, 288) give an example of a person entering a restau-
rant in a strange city.

The waiter informs him that there is no menu, but that this
evening he may have either broiled salmon at $2.50 or steak
at $4.00. In a first-rate restaurant his choice would have been
steak, but considering his unknown surroundings and the differ-
ent prices he elects the salmon. Soon after the waiter returns from
the kitchen, apologizes profusely, blaming the uncommunicative
chef for omitting to tell him that fried snails and frog’s legs are also
on the bill of fare at $4.50 each. It so happens that our hero detests
them both and would always select salmon in preference to either,
yet his response is “Splendid, I’ll change my order to steak”.

Consider a set X that consists of the four main courses, salmon, steak,
snails, and frog’s legs. No preference relation over X rationalizes the per-
son’s behavior, because such a preference relation would have to rank
salmon above steak by his choice from {salmon,steak} and steak above
salmon by his choice from X .

A reasonable explanation for the person’s behavior is that although
steak appears in both choice problems, he does not regard it to be the
same dish. The availability of snails and frog’s legs tells him that the steak
is likely to be of high quality. Without this information, he views steak as
low quality and chooses salmon.

No preference relation on X rationalizes the person’s behavior,
but a preference relation on {salmon, low quality steak,high quality steak,
snails, frog’s legs} does so:

high quality steak� salmon� low quality steak� snails� frog’s legs.

An underlying assumption behind the concept of a choice function is that
an alternative is the same in every choice set in which it appears. The choice
function in the example cannot be rationalized because the example identifies
two different options as the same alternative.
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Example 2.4: Partygoer

Each of the people in the set X = {A, B1, B2} organizes a party. A person
might be invited to a subset of those parties and can attend only one party.
Individuals B1 and B2 are both good friends of the partygoer but the re-
lations between B1 and B2 are tense. The person’s behavior is as follows.
If she is invited by A and B1, she accepts B1’s invitation. If she is invited
by all three individuals, she accepts A’s invitation. She does so because
she is worried that accepting the invitation of B1 or B2 will be interpreted
negatively by the other individual. Obviously such behavior is not ratio-
nalizable by a preference relation over X . As in the previous example, the
meaning of choosing one alternative (B1) is affected by the presence or
absence of another alternative (B2).

2.3 Property α

We say that a choice function satisfies property α if whenever the choice from A is
in a subset B then the alternative chosen from A is chosen also from B . We show
that (i) any choice function that selects the best alternative according to a prefer-
ence relation satisfies this property and (ii) any choice function that satisfies the
property is rationalizable.

Definition 2.3: Property α

Given a set X , a choice function c for X satisfies property α if for any sets A
and B with B ⊂ A ⊆ X and c (A)∈ B we have c (B ) = c (A).

Notice that property α is not satisfied by the choice functions in Examples 2.2,
2.3, and 2.4.

Proposition 2.1: Rationalizable choice function satisfies property α

Every rationalizable choice function satisfies property α.

Proof

Let c be a rationalizable choice function for X and let ¼ be a preference
relation such that for every set A ⊆ X , c (A) is the best alternative according
to ¼ in A. Assume that B ⊂ A and c (A) ∈ B . Since c (A)¼ y for all y ∈ A we
have c (A)¼ y for all y ∈ B and thus c (B ) = c (A).
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Proposition 2.2: Choice function satisfying property α is rationalizable

If X is a finite set then any choice function for X satisfying property α is
rationalizable.

Proof

Let c be a choice function for X satisfying property α. Denote by n the
number of elements in X . We construct a preference relation that rational-
izes c as follows. Denote c (X ) = a 1, c (X \{a 1}) = a 2, c (X \{a 1, a 2}) = a 3, and
so on. That is, a k is the choice from the set X after removing the elements
a 1, . . . , a k−1.

Consider the preference relation ¼ defined by a 1 � a 2 � · · · � a n . Let
A be a choice problem. The best alternative in A according to ¼ is the
first member of A in the sequence a 1, a 2, . . . , a n , say a m . By construction,
c ({a m ,a m+1, . . . , a n}) = a m and since A ⊆ {a m ,a m+1, . . . , a n} and a m ∈ A,
from property αwe have c (A) = a m .

2.4 Satisficing

Imagine an employer who must hire a worker. She interviews the candidates in
alphabetical order until she reaches a candidate whom she considers to be good
enough, and then stops. If no candidate is good enough, she chooses the last
candidate to be interviewed.

Formally, denote the set of candidates by X . The employer has in mind a
function v : X →R that measures the candidates’ qualities. She has in mind also
a number v ∗, an aspiration level. Let O be an ordering of the set X (for example,
alphabetical order), which describes the sequence in which the employer inter-
views candidates. Given a set A of alternatives, the employer chooses the first
alternative a ∈ A in the ordering O for which v (a ) ≥ v ∗ if such an alternative
exists, and otherwise chooses the last element in A according to O.

Definition 2.4: Satisficing choice function

Let X be a finite set. Given a function v : X → R (the valuation function),
a number v ∗ (the aspiration level), and an ordering O of X , the satisficing
choice function c is defined as follows. Let A = {a 1, . . . , a K }where a 1 O a 2 O
· · ·O a K . Then

c (A) =

(
a k if v (a k )≥ v ∗ and v (a l )< v ∗ for l = 1, . . . , k −1

a K if v (a l )< v ∗ for l = 1, . . . , K .



2.5 The money pump argument 23

Every alternative x for which v (x ) ≥ v ∗ is satisfactory and every other
alternative is unsatisfactory.

Proposition 2.3: Satisficing choice function is rationalizable

A satisficing choice function is rationalizable.

This result can be proved by showing that any satisficing choice function
satisfies property α (see Problem 3). Here we provide a direct proof.

Proof

Let c be the satisficing choice function for valuation function v , aspira-
tion level v ∗, and ordering O. We construct a preference relation ¼ that
rationalizes c . At the top of the preference relation we put the satisfac-
tory alternatives, X+ = {x ∈ X : v (x ) ≥ v ∗}, in the order given by O. Then
we put all the unsatisfactory alternatives, X− = {x ∈ X : v (x ) < v ∗}, in the
order given by the reverse of O. (If, for example, X = {a ,b , c , d }, O is alpha-
betical order, v ∗ = 0, and the valuation function is defined by v (a ) = −1,
v (b ) = −2, v (c ) = 1, and v (d ) = 3, then the preference relation we con-
struct is c � d �b � a .)

We now show that this preference relation rationalizes c . Let A ⊆ X . If
A contains a member of X+ then the best alternative in A according to ¼
is the first alternative, according to O, in A ∩ X+, which is c (A). If A does
not contain a member of X+ then A ⊆ X− and the best alternative in A
according to ¼ is the last element in A according to O, which is c (A).

2.5 The money pump argument

The assumption that a choice function is rationalizable is sometimes defended
on the ground that behavior that is inconsistent with rationality could produce
choices that harm the individual.

Suppose that X consists of three alternatives, a , b , and c , interpreted as ob-
jects, and that an individual’s choice function assigns a to {a ,b}, b to {b , c }, and
c to {a , c }. An implication of this choice function is that for any object x , if the
individual holds x then there is an object y such that the individual is willing to
exchange x for y ; given that she prefers y to x , she is willing to pay some (pos-
sibly small) amount of money to make the exchange. Assume that for each such
exchange, this amount of money is at least $1. In this case, a manipulator could
first give a to the individual, then offer to replace a with c in return for $1, then
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offer to replace c with b in return for another $1, and then offer to replace b with
a for yet another $1. After these three exchanges, the individual holds a , as she
did initially, and is $3 poorer. The manipulator can repeat the exercise, taking as
much money from the individual as she likes. Such a mechanism is known as a
money pump.

In fact, for any choice function c that does not satisfy condition α, such ma-
nipulation is possible. Assume that there are sets A and B with B ⊂ A ⊆ X and
c (A)∈ B and c (B ) 6= c (A). The manipulation goes as follows.

Take c (A). (i) Are you willing to replace c (A)with any element in B \{c (A)} for
some amount of money? The individual can now choose from the set B and will
agree and choose c (B ). (ii) Are you willing to replace c (B ) with an alternative in
A \ {c (B )} for some amount of money? The individual can now choose from the
entire set A and will agree and choose c (A). The manipulator can repeat the two
steps as many times as she wishes.

The effectiveness of the manipulation depends on the inability of the ma-
nipulated individual to notice the exploitation. We leave it to you to judge
whether the argument is a persuasive justification of the assumption that choice
is rationalizable.

2.6 Evidence of choices inconsistent with rationality

Ample research demonstrates that human behavior is sometimes not rational in
the sense we have defined. From the multitude of examples, we select three ex-
periments that demonstrate this point; for each example, we identify features of
behavior that are inconsistent with the assumption of rational behavior. The first
experiment involves a situation in which some subjects’ choices conflict with
property α. The second and third experiments challenge the assumption that an
individual chooses an alternative from a set, independently of the way the set is
described. The experiments were first conducted many years ago (see the Notes
at the end of the chapter). Here we report results of online experiments (us-
ing the website http://arielrubinstein.org/gt) in which the subjects were a
large number of students around the world with similar academic backgrounds
to those of the potential readers of this book.

2.6.1 Attention effect

Which of the following cameras do you choose?

Camera A Average rating 9.1, 6 megapixels
Camera B Average rating 8.3, 9 megapixels

http://arielrubinstein.org/gt
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Now make another choice.

Which of the following cameras do you choose?

Camera A Average rating 9.1, 6 megapixels
Camera B Average rating 8.3, 9 megapixels
Camera C Average rating 8.1, 7 megapixels

Each question was answered by about 1,300 participants on the website
http://arielrubinstein.org/gt. The results are given in the following tables.

Choice between A and B

Camera A 48%
Camera B 52%

Choice between A, B , and C

Camera A 30%
Camera B 68%
Camera C 2%

Thus the appearance of C does not lead people to choose C , but rather
causes a significant fraction of participants to choose B , which dominates C ,
even though in a choice between A and B they choose A. One explanation of this
result is that the availability of C directs the participants’ focus to B , the alter-
native that dominates it. An alternative explanation is that the dominance of B
over C provides a reason to choose B , a reason that does not apply to A.

2.6.2 Framing effects

Sometimes individuals’ choices depend on the way in which the alternatives are
described.

You have to spin either roulette A or roulette B . The outcomes of
spinning each roulette are given in the following table.

White Red Green Yellow

roulette A 90% 6% 1% 3%
$0 $45 $30 −$15

roulette B 90% 7% 1% 2%
$0 $45 −$10 −$15

Which roulette do you choose?

Subjects’ choices in this experiment are generally split more or less equally
between the two roulettes. About 51% of around 4,000 participants at the website
http://arielrubinstein.org/gt have chosen A.

http://arielrubinstein.org/gt
http://arielrubinstein.org/gt
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A common explanation for the choice of A is that the problem is complicated
and participants simplify it by “canceling” similar parameters. The outcomes
of White in the two roulettes are identical and the outcomes of Red and Yellow
are very similar; ignoring these colors leaves Green, which yields a much better
outcome for roulette A.

Here is another choice problem.

You have to spin either roulette C or roulette D . The outcomes of
spinning each roulette are given in the following table.

White Red Black Green Yellow

roulette C 90% 6% 1% 1% 2%
$0 $45 $30 −$15 −$15

roulette D 90% 6% 1% 1% 2%
$0 $45 $45 −$10 −$15

Which roulette do you choose?

It is clear that D dominates C , and indeed almost all participants (93%) at
http://arielrubinstein.org/gt have chosen D .

Now notice that A and C differ only in their presentation (the color Yellow in A
is split in C into two contingencies). The same is true of B and D (the color Red
in B is split in D into two contingencies). The different presentations seem to
cause at least half of the participants to apply different choice procedures: they
reduce the complicated problem to a simpler one in the choice between A and B
and apply a domination criterion in the choice between C and D .

2.6.3 Mental accounting

Imagine that you have bought a ticket for a show for $40. When
you reach the theatre you discover that you have lost the ticket.
You can buy another ticket at the same price. Will you do so?

Now think about another situation.

Imagine that you intend to go to a show. When you take your wal-
let out of your pocket to pay for the $40 ticket, you discover that
you have lost $40, but you still have enough cash to buy a ticket.
Will you do so?

http://arielrubinstein.org/gt


Problems 27

In both of these situations, you face a choice between

1. having $80 less than you did before departing home and seeing the perfor-
mance

2. having $40 less than you did before departing home and not seeing the per-
formance.

Although in both situations you face these same options, more people choose
to buy the ticket in the second situation than in the first situation. About 65% of
the 1,200 participants at http://arielrubinstein.org/gt have stated that they
would buy a new ticket in the first situation, in which they discover they have lost
a ticket they purchased previously. Among a similar number of different partic-
ipants, 79% have stated they would buy a ticket after discovering that they had
lost $40. The reason for the difference seems to be that in the first case people
follow a mental accounting process that counts the price of a ticket as $80, and
they regard that price as too high. In the second case, some people appear to
think about the loss of the $40 as unrelated to the issue of ticket purchase and
count the price of a ticket as only $40.

Problems

1. Five choice procedures. Determine whether each of the following five choice
functions over a set X is rationalizable. If the answer is positive, find a pref-
erence relation that rationalizes the choice function. Otherwise, prove that
the choice function is not rationalizable.

a. The set X consists of candidates for a job. An individual has a complete
ranking of the candidates. When she has to choose from a set A, she first
orders the candidates in A alphabetically, and then examines the list from
the beginning. She goes down the list as long as the new candidate is
better than the previous one. If the nth candidate is the first who is better
than the (n +1)th candidate, she stops and chooses the nth candidate. If
in her journey she never gets to a candidate who is inferior to the previous
one, she chooses the last candidate.

b. The set X consists of n basketball teams, indexed 1 to n . The teams par-
ticipate in a round robin tournament. That is, every team plays against
every other team. An individual knows, for every pair of teams, which
one wins. When she chooses a team from a set A, she chooses the one
with the largest number of wins among the games between teams in A.
If more than one team has the largest number of wins, she chooses the
team with the lowest index among the tied teams.

http://arielrubinstein.org/gt
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c. The set X consists of pictures. An individual has in mind L binary criteria,
each of which takes the value 0 (the criterion is not met) or 1 (the criterion
is met). Examples of such criteria are whether the painting is modern,
whether the painter is famous, and whether the price is above $1,000.
The criteria are ordered: criterion1, criterion2, . . . , criterionL . When the
individual chooses a picture from a subset of X , she rejects those that
do not satisfy the first criterion. Then, from those that satisfy the first
criterion, she rejects those that do not satisfy the second criterion. And
so on, until only one picture remains. Assume that any two alternatives
have a criterion by which they differ, so that the procedure always yields
a unique choice.

d. An individual has in mind two numerical functions, u and v , on the set
X . For any set A ⊆ X , she first looks for the u -maximal alternative in A. If
its u value is at least 10, she selects it. If not, she selects the v -maximal
alternative in A.

e. An individual has in mind a preference relation on the set X . Each al-
ternative is either red or blue. Given a set A ⊆ X , she chooses the best
alternative among those with the color that is more common in A. In the
case of a tie, she chooses among the red alternatives.

2. Property of a choice function satisfying property α. An individual has a choice
function that satisfies property α. Consider two sets, A and B , such that
c (A)∈ B and c (B )∈ A. Prove that c (A) = c (B ).

3. Alternative proof of Proposition 2.3. Prove Proposition 2.3 by showing that
any satisficing choice function satisfies property α.

4. Variant of satisficing. An individual follows a procedure that differs from the
satisficing procedure only in that if she does not find any satisfactory alterna-
tive then she goes back and examines all the alternatives and chooses the one
for which v (x ) is highest. Show that the individual’s choice function satisfies
property α and construct a preference relation that rationalizes it.

5. Path independence. Consider the following property of a choice function,
called path independence:

c (A ∪ B ) = c ({c (A), c (B )})whenever A ∩ B =∅.

That is, if the individual splits a choice set into two disjoint subsets, makes a
choice from each subset, and then chooses between those two alternatives,
she chooses the same alternative as she does when she chooses from the
entire set.



Notes 29

a. Let c be a choice function that assigns to each set the best alternative
according to some preference relation. Show that c is path independent.

b. Show that any choice function that is path independent is rationalizable
(by showing it satisfies property α).

6. Caring up to a limit. An individual has in mind two numerical functions u
and v defined on the set X . Given a choice problem A, she first looks for
the u -maximal element x in A. If v (x ) ≥ v ∗ she chooses x . Otherwise, she
chooses the v -maximal element in A. (Notice that this choice function differs
from the one in Problem 1d.)

a. Interpret the choice function in the case that u is a measure of the well-
being of a friend and v is a measure of the wellbeing of the individual.

b. Show that for some X , u , and v the procedure is not rationalizable.

7. Extension of Proposition 2.2. Let X be an infinite set and c a choice function
on X . Show, using the following two steps, that if c satisfies property α then
it can be rationalized.

a. Define a binary relation ¼ by x ¼ y if c ({x , y }) = x . Show that this relation
is a preference relation.

b. Show that for every choice problem A, c (A)¼ a for every a ∈ A.

8. Money pump. Can a trader who thinks that 2 + 3 = 6 survive in our cruel
world?

Notes

Property α was formulated by Chernoff (1954, Postulate 4, 429). The notion of
satisficing is due to Simon (1956). The idea of a money pump appears to be due
to Davidson et al. (1955, 145–146). Example 2.3 is taken from Luce and Raiffa
(1957, 288). The experiment in Section 2.6.1 is based on the idea in Huber et al.
(1982). The experiment in Section 2.6.2 was suggested by Tversky and Kahneman
(1986, S263–S265). Section 2.6.3 is taken from Kahneman and Tversky (1984,
347–348). The exposition of the chapter draws on Rubinstein (2006a, Lecture 3).




