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3 Preferences under uncertainty

3.1 Lotteries

In Chapter 1 we discuss a model of preferences over an arbitrary set of alterna-
tives. In this chapter we study an instance of the model in which an alternative
in the set involves randomness regarding the consequence it yields. We refer to
these alternatives as lotteries. For example, a raffle ticket that yields a car with
probability 0.001 and nothing otherwise is a lottery. A vacation on which you will
experience grey weather with probability 0.3 and sunshine with probability 0.7
can be thought of as a lottery as well.

The set X in the model we now discuss is constructed from a set Z of objects
called prizes. A lottery specifies the probability with which each prize is realized.
For simplicity, we study only lotteries for which the number of prizes that can be
realized is finite.

Definition 3.1: Lotteries

Let Z be a set (of prizes). A lottery over Z is a function p : Z →R that assigns
a positive number (probability) p (z ) to a finite number of members of Z
and 0 to all other members, with

∑
z∈Z p (z ) = 1. The support of the lot-

tery p , denoted supp(p ), is the set of all prizes to which p assigns positive
probability, {z ∈Z : p (z )> 0}.

We denote the set of all lotteries over Z by L(Z ), the lottery that yields
the prize z with probability 1 by [z ], and the lottery that yields the prize z k

with probability αk for k = 1, . . . , K by α1 · z 1⊕α2 · z 2⊕ · · ·⊕αK · z K .

If Z consists of two prizes, z 1 and z 2, then each member p of L(Z ) is specified
by a pair (p1, p2) of nonnegative numbers with sum 1, where p1 = p (z 1) and p2 =
p (z 2) are the probabilities of the prizes. Thus in this case L(Z ) can be identified
with the blue line segment in Figure 3.1a. If Z includes three options, L(Z ) can
similarly be identified with the triangle in Figure 3.1b.

3.2 Preferences over lotteries

We are interested in preference relations over L(Z ). In terms of the model in
Chapter 1, the set X is equal to L(Z ). Here are some examples.
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(a) The set L({z 1, z 2}) of lotteries. The
point (p1, p2) on the line segment repre-
sents the lottery p for which p (z 1) = p1

and p (z 2) = p2.
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(b) The set L({z 1, z 2, z 3}) of lotteries. The
point (p1, p2, p3) in the triangle represents
the lottery p for which p (z 1) = p1, p (z 2) =
p2, and p (z 3) = p3.

Figure 3.1

Example 3.1: A pessimist

An individual has a strict preference relation ¼∗ over the set Z of prizes
and (pessimistically) evaluates lotteries by the worst prize, according to
the preference relation, that occurs with positive probability. That is, she
prefers the lottery p ∈ L(Z ) to the lottery q ∈ L(Z ) if she prefers the worst
prize that occurs with positive probability in p to the worst prize that oc-
curs with positive probability in q . Formally, define w (p ) to be a prize in
supp(p ) such that y ¼∗ w (p ) for all y ∈ supp(p ). Then the individual’s
preference relation ¼ over L(Z ) is defined by p ¼q if w (p )¼∗ w (q ).

Note that there are many pessimistic preference relations, one for each
preference relation over the set of prizes.

For any such preferences, the individual is indifferent between two lot-
teries whenever she is indifferent between the worst prizes that occur with
positive probability in the lotteries. In one variant of the preferences that
breaks this tie, if two lotteries share the same worst possible prize then the
one for which the probability of the worst prize is lower is preferred.

Example 3.2: Good and bad

An individual divides the set Z of prizes into two subsets, good and bad.
For any lottery p ∈ L(Z ), let G (p ) =

∑
z∈good p (z ) be the total probability

that a prize in good occurs. The individual prefers the lottery p ∈ L(Z ) to
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the lottery q ∈ L(Z ) if the probability of a prize in good occurring is at least
as high for p as it is for q . Formally, p ¼q if G (p )≥G (q ).

Different partitions of Z into good and bad generate different prefer-
ence relations.

Example 3.3: Minimizing options

An individual wants the number of prizes that might be realized (the num-
ber of prizes in the support of the lottery) to be as small as possible. For-
mally, p ¼ q if |supp(p )| ≤ |supp(q )|. This preference relation makes sense
for an individual who does not care about the realization of the lottery but
wants to be as prepared as possible (physically or mentally) for all possible
outcomes.

Preference relations over lotteries can take an unlimited number of other
forms. To help us organize this large set, we now describe two plausible prop-
erties of preference relations and identify the set of all preference relations that
satisfy the properties.

3.2.1 Properties of preferences

Continuity Suppose that for the prizes a , b , and c we have [a ] � [b ] � [c ], and
consider lotteries of the form α · a ⊕ (1− α) · c (with 0 ≤ α ≤ 1). The continu-
ity property requires that as we move continuously from α = 1 (the degenerate
lottery [a ], which is preferred to [b ]) to α = 0 (the degenerate lottery [c ], which
is worse than [b ]) we pass (at least once) some value of α such that the lottery
α ·a ⊕ (1−α) · c is indifferent to [b ].

Definition 3.2: Continuity

For any set Z of prizes, a preference relation¼ over L(Z ) is continuous if for
any three prizes a , b , and c in Z such that [a ]� [b ]� [c ] there is a number
αwith 0<α< 1 such that [b ]∼α ·a ⊕ (1−α) · c .

When Z includes at least three prizes, pessimistic preferences are not contin-
uous: if [a ]� [b ]� [c ] then [b ]� α ·a ⊕ (1−α) · c , for every number α < 1. Good
and bad preferences and minimizing options preferences satisfy the continuity
condition vacuously because in each case there are no prizes a , b and c for which
[a ]� [b ]� [c ].

Independence To define the second property, we need to first define the notion
of a compound lottery. Suppose that uncertainty is realized in two stages. First
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the lottery pk is drawn with probability αk , for k = 1, . . . , K , and then each prize
z is realized with probability pk (z ). In this case, the probability that each prize z
is ultimately realized is

∑
k=1,...,K αk pk (z ). Note that

∑
k=1,...,K αk pk (z )≥ 0 for each

z and the sum of these expressions over all prizes z is equal to 1. We refer to
the lottery in which each prize z occurs with probability

∑
k=1,...,K αk pk (z ) as a

compound lottery, and denote it by α1 · p1 ⊕ · · · ⊕ αK · p K . For example, let Z =
{W, D, L}, and define the lotteries p = 0.6·W⊕0.4·L and q = 0.2·W⊕0.3·D⊕0.5·L.
Then the compound lottery α ·p ⊕ (1−α) ·q is the lottery

(α0.6+(1−α)0.2) ·W ⊕ ((1−α)0.3) ·D ⊕ (α0.4+(1−α)0.5) · L.

Definition 3.3: Compound lottery

Let Z be a set of prizes, let p1, . . . , pK be lotteries in L(Z ), and let α1, . . . ,αK

be nonnegative numbers with sum 1. The compound lottery α1 · p1 ⊕
· · · ⊕ αK · pK is the lottery that yields each prize z ∈ Z with probability∑

k=1,...,K αk pk (z ).

We can now state the second property of preference relations over lotteries.

Definition 3.4: Independence

Let Z be a set of prizes. A preference relation¼ over L(Z ) satisfies the inde-
pendence property if for any lotteries α1 · z 1⊕ · · ·⊕αk · z k ⊕ · · ·⊕αK · z K and
β ·a ⊕ (1−β ) ·b we have

[z k ]¼ β ·a ⊕ (1−β ) ·b

⇔

α1 · z 1⊕ · · ·⊕αk · z k ⊕ · · ·⊕αK · z K

¼α1 · z 1⊕ · · ·⊕αk · (β ·a ⊕ (1−β ) ·b )⊕ · · ·⊕αK · z K .

The logic of the property is procedural: the only difference between the lot-
tery α1 · z 1⊕· · ·⊕αk · z k ⊕· · ·⊕αK · z K and the compound lottery α1 · z 1⊕· · ·⊕αk ·
(βa ⊕ (1−β )b )⊕ · · · ⊕αK · z K is in the k th term, which is z k in the first case and
β ·a⊕(1−β ) ·b in the second case. Consequently it is natural to compare the two
lotteries by comparing [z k ] and β ·a ⊕ (1−β ) ·b .

Pessimistic preferences do not satisfy this property. Let [a ] � [b ] and con-
sider, for example, the lotteries

p = 0.6 ·a ⊕0.4 ·b and q = 0.6 ·b ⊕0.4 ·b = [b ].

These lotteries differ only in the prize that is realized with probability 0.6. Given
that [a ] � [b ], the independence property requires that p � q . However, for a
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pessimist the two lotteries are indifferent since the worst prize in the lotteries is
the same (b ).

Minimizing options preferences also violate the independence property: for
any prizes a and b , the lotteries [a ] and [b ] are indifferent, but 0.5 · a ⊕ 0.5 ·b ≺
0.5 ·b ⊕0.5 ·b .

Good and bad preferences satisfy the independence property. Let p be the
lottery α1 · z 1⊕ · · ·⊕αk · z k ⊕ · · ·⊕αK · z K and let q be the compound lottery

α1 · z 1⊕ · · ·⊕αk · (β ·a ⊕ (1−β ) ·b )⊕ · · ·⊕αK · z K .

Note that G (p )−G (q ) = αkG ([z k ])−αkG (β ·a ⊕ (1−β ) ·b ), so that since αk > 0,
the sign of G (p )−G (q ) is the same as the sign of G ([z k ])−G (β · a ⊕ (1−β ) ·b ).
Thus the preferences compare p and q in the same way that they compare [z k ]
and β ·a ⊕ (1−β ) ·b .

Monotonicity Consider lotteries that assign positive probability to only two
prizes a and b , with [a ] � [b ]. We say that a preference relation over L(Z ) is
monotonic if it ranks such lotteries by the probability that a occurs. That is,
monotonic preferences rank lotteries of the type α · a ⊕ (1− α) · b according to
the value of α.

The next result says that any preference relation over L(Z ) that satisfies the
independence property is monotonic.

Lemma 3.1: Independence implies monotonicity

Let Z be a set of prizes. Assume that ¼, a preference relation over L(Z ),
satisfies the independence property. Let a and b be two prizes with [a ]�
[b ], and let α and β be two probabilities. Then

α>β ⇔ α ·a ⊕ (1−α) ·b � β ·a ⊕ (1−β ) ·b.

Proof

Let pα = α ·a ⊕ (1−α) ·b . Because ¼ satisfies the independence property,
pα �α ·b ⊕ (1−α) ·b = [b ]. Using the independence property again we get

pα = (β/α) ·pα⊕ (1−β/α) ·pα � (β/α) ·pα⊕ (1−β/α) ·b = β ·a ⊕ (1−β ) ·b.

3.3 Expected utility

We now introduce the type of preferences most commonly assumed in economic
theory. These preferences emerge when an individual uses the following scheme
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to compare lotteries. She attaches to each prize z a number, which we refer to
as the value of the prize (or the Bernoulli number) and denote v (z ); when evalu-
ating a lottery p , she calculates the expected value of the lottery,

∑
z∈Z p (z )v (z ).

The individual’s preferences are then defined by

p ¼q if
∑

z∈Z

p (z )v (z )≥
∑

z∈Z

q (z )v (z ).

Definition 3.5: Expected utility

For any set Z of prizes, a preference relation ¼ on the set L(Z ) of lotteries
is consistent with expected utility if there is a function v : Z → R such that
¼ is represented by the utility function U defined by U (p ) =

∑
z∈Z p (z )v (z )

for each p ∈ L(Z ). The function v is called the Bernoulli function for the
representation.

We first show that a preference relation consistent with expected utility is
continuous and satisfies the independence property.

Proposition 3.1: Expected utility is continuous and independent

A preference relation on a set of lotteries that is consistent with expected
utility satisfies the continuity and independence properties.

Proof

Let Z be a set of prizes, let ¼ be a preference relation over L(Z ), and let
v : Z → R be a function such that the function U defined by U (p ) =∑

z∈Z p (z )v (z ) for each p ∈ L(Z ) represents ¼.

Continuity Let a , b , and c ∈ Z satisfy [a ] � [b ] � [c ]. For every z ∈ Z ,
U ([z ]) = v (z ). Thus v (a ) > v (b ) > v (c ). Let α satisfy αv (a ) + (1−α)v (c ) =
v (b ) (that is, 0<α= (v (b )−v (c ))/(v (a )−v (c ))< 1). Then α ·a ⊕ (1−α) ·c ∼
[b ].

Independence Consider lotteries α1 ·z 1⊕· · ·⊕αK ·z K and β ·a ⊕ (1−β ) ·b .
We have

α1 · z 1⊕ · · ·⊕αk · z k ⊕ · · ·⊕αK · z K

¼α1 · z 1⊕ · · ·⊕αk · (β ·a ⊕ (1−β ) ·b )⊕ · · ·⊕αK · z K

⇔ (by the formula for U , which represents ¼ )
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α1v (z 1)+ · · ·+αk v (z k )+ · · ·+αK v (z K )

≥α1v (z 1)+ · · ·+αkβv (a )+αk (1−β )v (b )+ · · ·+αK v (z K )

⇔ (by algebra)

αk v (z k )≥αkβv (a )+αk (1−β )v (b )

⇔ (since αk > 0)

v (z k )≥ βv (a )+ (1−β )v (b )

⇔ (by the formula for U , which represents ¼)

[z k ]¼ β ·a ⊕ (1−β ) ·b.

The next result, the main one of this chapter, shows that any preference re-
lation that satisfies continuity and independence is consistent with expected
utility. That is, we can attach values to the prizes such that the comparison of
the expected values of any two lotteries is equivalent to the comparison of the
lotteries according to the preference relation.

Proposition 3.2: Continuity and independence implies expected utility

A preference relation on a set of lotteries with a finite set of prizes that
satisfies the continuity and independence properties is consistent with
expected utility.

Proof

Let Z be a finite set of prizes and let ¼ be a preference relation on L(Z )
satisfying continuity and independence. Label the members of Z so that
[z 1]¼ · · ·¼ [z K ]. Let z 1 =M (the best prize) and z K =m (the worst prize).

First suppose that [M ]� [m ]. Then by continuity, for every prize z there
is a number v (z ) such that [z ]∼ v (z ) ·M ⊕ (1−v (z )) ·m . In fact, by mono-
tonicity this number is unique. Consider a lottery p (z 1) ·z 1⊕· · ·⊕p (z K ) ·z K .
By applying independence K times, the individual is indifferent between
this lottery and the compound lottery

p (z 1) ·
�

v (z 1) ·M ⊕ (1−v (z 1)) ·m
�
⊕· · ·⊕p (z K ) ·

�
v (z K ) ·M ⊕ (1−v (z K )) ·m

�
.

This compound lottery is equal to the lottery
� ∑

k=1,...,K

p (z k )v (z k )

�

·M ⊕

�

1−
∑

k=1,...,K

p (z k )v (z k )

�

·m .

Given [M ] � [m ], Lemma 3.1 implies that the comparison between the
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lotteries p and q is equivalent to the comparison between the numbers∑
k=1,...,K p (z k )v (z k ) and

∑
k=1,...,K q (z k )v (z k ).

Now suppose that [M ] ∼ [m ]. Then by independence, p ∼ [M ] for any
lottery p . That is, the individual is indifferent between all lotteries. In this
case, choose v (z k ) = 0 for all k . Then the function U defined by U (p ) =∑

z∈Z p (z )v (z ) = 0 for each p ∈ L(Z ) represents the preference relation.

Comment

Note that if the function v : Z →R is the Bernoulli function for an expected utility
representation of a certain preference relation over L(Z ) then for any numbers
α > 0 and β so too is the function w given by w (z ) = αv (z ) +β for all z ∈ Z . In
fact the converse is true also (we omit a proof): if v : Z → R and w : Z → R are
Bernoulli functions for representations of a certain preference relation then for
some numbers α> 0 and β we have w (z ) =αv (z )+β for all z ∈Z .

3.4 Theory and experiments

We now briefly discuss the connection (and disconnection) between the model
of expected utility and human behavior. The following well-known pair of ques-
tions demonstrates a tension between the two.

Imagine that you have to choose between the following two lot-
teries.

L 1: you receive $4,000 with probability 0.2 and zero otherwise.
R1: you receive $3,000 with probability 0.25 and zero otherwise.

Which lottery do you choose?

Imagine that you have to choose between the following two lot-
teries.

L 2: you receive $4,000 with probability 0.8 and zero otherwise.
R2: you receive $3,000 with certainty.

Which lottery do you choose?

The responses of 7,932 students at http://arielrubinstein.org/gt are
summarized in the following table.

http://arielrubinstein.org/gt
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L 2 R2

L 1 20% 44%
R1 5% 31%

In our notation, the lotteries are

L 1 = 0.2 · [$4000]⊕0.8 · [$0] and R1 = 0.25 · [$3000]⊕0.75 · [$0]

L 2 = 0.8 · [$4000]⊕0.2 · [$0] and R2 = [$3000].

Note that L 1 = 0.25 ·L 2⊕0.75 ·[0] and R1 = 0.25 ·R2⊕0.75 ·[0]. Thus if a preference
relation on L(Z ) satisfies the independence property, it should rank L 1 relative to
R1 in the same way that it ranks L 2 relative to R2. So among individuals who have
a strict preference between the lotteries, only those whose answers are (i) L 1 and
L 2 or (ii) R1 and R2 have preferences that can be represented by expected utility.
About 51% of the participants are in this category.

Of the rest, very few (5%) choose R1 and L 2. The most popular pair of answers
is L 1 and R2, chosen by 44% of the participants. Nothing is wrong with those
subjects (which include the authors of this book). But such a pair of choices
conflicts with expected utility theory; the conflict is known as the Allais paradox.

One explanation for choosing R2 over L 2 is that the chance of getting an extra
$1,000 is not worth the risk of losing the certainty of getting $3,000. The idea
involves risk aversion, which we discuss in the next section.

Many of us use a different consideration when we compare L 1 and R1. There,
we face a dilemma: increasing the probability of winning versus a significant loss
in the prize. The probabilities 0.25 and 0.2 seem similar whereas the prizes $4,000
and $3,000 are not. Therefore, we ignore the difference in the probabilities and
focus on the difference in the prizes, a consideration that pushes us to choose L 1.

Experimentalists usually present the two questions to different groups of peo-
ple, randomly assigning each participant to one of the questions. They do so to
avoid participants guessing the object of the experiment, in which case a partici-
pant’s answer to the second question might be affected by her answer to the first
one. However, even when the two questions are given to the same people, we get
similar results.

Findings like the ones we have described have led to many suggestions for
alternative forms of preferences over the set of lotteries. In experiments, the be-
havior of many people is inconsistent with any of these alternatives; each theory
seems at best to fit some people’s behavior in some contexts.

3.5 Risk aversion

We close the chapter by considering attitudes to risk. We assume that the set
Z of prizes is the set of nonnegative real numbers, and think of the prize z as
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0

v (z )

z →

Figure 3.2 A concave Bernoulli function.

the monetary reward of $z . We denote the expected value of any lottery p by
E (p ) =

∑
z∈supp(Z )p (z )z .

An individual is risk-neutral if she cares only about the expectation of a lot-
tery, so that her preferences over lotteries are represented by E (p ). Such prefer-
ences are consistent with expected utility—take v (z ) = z . An individual is risk-
averse if for every lottery p she finds the prize equal to the expectation of p at
least as good as p . That is, an individual with preference relation ¼ is risk-averse
if [E (p )]¼ p for every p . If for every lottery p that involves more than one prize,
the individual strictly prefers [E (p )] to p , she is strictly risk-averse.

Definition 3.6: Risk aversion and risk neutrality

If Z = R+, a preference relation ¼ on the set L(Z ) of lotteries over Z is
risk-averse if [E (p )] ¼ p for every lottery p ∈ L(Z ), is strictly risk-averse
if [E (p )] � p for every lottery p ∈ L(Z ) that involves more than one
prize, and is risk-neutral if [E (p )] ∼ p for every lottery p ∈ L(Z ), where
E (p ) =

∑
z∈Z p (z )z .

A strictly risk-averse individual is willing to pay a positive amount of money
to replace a lottery with its expected value, so that the fact that an individual buys
insurance (which typically reduces but does not eliminate risk) suggests that her
preferences are strictly risk-averse. On the other hand, the fact that an individual
gambles, paying money to replace a certain amount of money with a lottery with
a lower expected value, suggests that her preferences are not risk-averse.

The property of risk aversion applies to any preference relation, whether or
not it is consistent with expected utility. We now show that if an individual’s pref-
erence relation is consistent with expected utility, it is risk-averse if and only if
it has a representation for which the Bernoulli function is concave. (Refer to
Figure 3.2.)
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Proposition 3.3: Risk aversion and concavity of Bernoulli function

Let Z = R+, assume ¼ is a preference relation over L(Z ) that is consistent
with expected utility, and let v be the Bernoulli function for the represen-
tation. Then ¼ is risk-averse if and only if v is concave.

Proof

Let x and y be any prizes and let α ∈ [0,1]. If ¼ is risk-averse then [αx +
(1−α)y ]¼ α ·x ⊕ (1−α) · y , so that v (αx +(1−α)y )≥ αv (x )+ (1−α)v (y ).
That is, v is concave.

Now assume that v is concave. Then Jensen’s inequality implies that
v
�∑

z∈Z p (z )z
�
≥
∑

z∈Z p (z )v (z ), so that
�∑

z∈Z p (z )z
�
¼ p . Thus the indi-

vidual is risk-averse.

Problems

1. Most likely prize. An individual evaluates a lottery by the probability that the
most likely prize is realized (independently of the identity of the prize). That
is, for any lotteries p and q we have p ¼ q if maxz p (z ) ≥maxz q (z ). Such a
preference relation is reasonable in a situation where the individual is indif-
ferent between all prizes (e.g., the prizes are similar vacation destinations)
and she can prepare herself for only one of the options (in contrast to Ex-
ample 3.3, where she wants to prepare herself for all options and prefers a
lottery with a smaller support).

Show that if Z contains at least three elements, this preference relation is
continuous but does not satisfy independence.

2. A parent. A parent has two children, A and B . The parent has in hand only
one gift. She is indifferent between giving the gift to either child but prefers
to toss a fair coin to determine which child obtains the gift over giving it to
either of the children.

Explain why the parent’s preferences are not consistent with expected utility.

3. Comparing the most likely prize. An individual has in mind a preference re-
lation ¼∗ over the set of prizes. Whenever each of two lotteries has a single
most likely prize she compares the lotteries by comparing the most likely
prizes using ¼∗. Assume Z contains at least three prizes. Does such a prefer-
ence relation satisfy continuity or independence?
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4. Two prizes. Assume that the set Z consists of two prizes, a and b . Show that
only three preference relations over L(Z ) satisfy independence.

5. Simple lotteries. Let Y be a finite set of objects. For any number α ∈ [0,1] and
object z ∈ Y , the simple lottery (α, z ) means that z is obtained with proba-
bility α and nothing is obtained with probability 1−α. Consider preference
relations over the set of simple lotteries.

A preference relation satisfies A1 if for every x , y ∈ Y with (1, y )� (1,x ) there
is a probability α such that (α, y )∼ (1,x ).

A preference relation satisfies A2 if when α ≥ β then for any x , y ∈ Y the
comparison between (α,x ) and (β , y ) is the same as that between (1,x ) and
(β/α, y ).

a. Show that if an individual has in mind a function v that attaches a num-
ber v (z ) > 0 to each object z and her preference relation ¼ is defined by
(α,x )¼ (β , y ) if αv (x )≥ βv (y ), then the preference relation satisfies both
A1 and A2.

b. Suggest a preference relation that satisfies A1 but not A2 and one that
satisfies A2 but not A1.

The following questions refer to the model of expected utility with monetary
prizes and risk aversion described in Section 3.5. For these questions, consider
a risk-averse individual whose preferences are consistent with expected utility.
A prize is the total amount of money she holds after she makes a choice and
after the realization of the uncertainties. Denote by v a Bernoulli function whose
expected value represents the individual’s preferences over L(Z ) and assume that
v has a derivative.

6. Additional lottery. An individual faces the monetary lottery p . She is made
the offer to replace every z in the support of p with the lottery that yields
z − 1 and z + 1 each with probability 1

2
. Describe the lottery that she faces if

she accepts the offer and show that if she is strictly risk-averse she rejects the
offer.

7. Casino. An individual has wealth w and has to choose an amount x , after
which a lottery is conducted in which with probability α she gets 2x and
with probability 1 − α she loses x . Show that the higher is α the higher is
the amount x she chooses.

8. Insurance. An individual has wealth w and is afraid that an accident will
occur with probability p that will cause her a loss of D . The individual has
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to choose an amount, x , she will pay for insurance that will pay her λx (for
some given λ) if the accident occurs.

a. The insurer’s expected profit is x −λpx . Assume that λmakes this profit
zero, so that λ = 1/p . Show that if the individual is risk-averse she opti-
mally chooses x = p D , so that she is fully insured: her net wealth is the
same whether or not she has an accident.

b. Assume that pλ < 1 (that is, the insurer’s expected profit is positive).
Show that if the individual is strictly risk-averse then she chooses partial
insurance: λx <D .

Notes

The theory of expected utility was developed by von Neumann and Morgen-
stern (1947, 15–29 and 617–628). The Allais paradox (Section 3.4) is due to Allais
(1953, 527). The notion of risk aversion (Section 3.5) is due to Pratt (1964). The
exposition of the chapter draws upon Rubinstein (2006a, Lecture 7).




