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16 Extensive games

A market is currently served by a single incumbent. A competitor is considering
entering the market. The incumbent wants to remain alone in the market and
thus wishes to deter the competitor from entering. If the competitor enters, the
incumbent can start a price war or can act cooperatively. A price war is the worst
outcome for both parties; cooperative behavior by the incumbent is best for the
competitor, and for the incumbent is better than a price war but worse than the
competitor’s staying out of the market.

We can model this situation as a strategic game. The competitor (player 1) de-
cides whether to enter the market (In) or not (Out). If the competitor enters, the
incumbent (player 2) decides whether to Fight the competitor or to Cooperate
with it. The following table shows the game.

Fight Cooperate
In 0,0 2,2

Out 1,5 1,5

The game has two pure Nash equilibria, (In, Cooperate) and (Out, Fight). In the
second equilibrium the incumbent plans to fight the competitor if she enters, a
decision that deters the competitor from entering.

The formulation of the situation as this strategic game makes sense if the in-
cumbent can decide initially to fight a competitor who enters the market and
cannot reconsider this decision if the competitor does in fact enter. If the in-
cumbent can reconsider her decision, the analysis is less reasonable: after the
competitor enters, the incumbent is better off being cooperative than waging a
price war. In this case, a model in which the timing of the decisions is described
explicitly is more suitable for analyzing the situation. One such model is illus-
trated in Figure 16.1. Play starts at the initial node, indicated in the figure by a
small circle. The label above this node indicates the player whose move starts
the game (player 1, the competitor). The branches emanating from the node, la-
beled In and Out, represent the actions available to the competitor at the start
of the game. If she chooses Out, the game is over. If she chooses In, player 2,
the incumbent, chooses between Cooperate and Fight. The payoffs at the end-
points represent the players’ preferences: player 1 (whose payoff is listed first in
each pair) prefers (In, Cooperate) to Out to (In, Fight), and player 2 prefers Out to
(In, Cooperate) to (In, Fight).
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Figure 16.1 The entry game described in the introduction to the chapter.

We refer to each sequence of actions as a history. In Figure 16.1 there are five
histories. The initial node represents the null history: no action has yet been
chosen. The node shown by a small disk represents the history (In). Each of the
three other histories, (In, Cooperate), (In, Fight), and (Out), leads to an endpoint
of the game. We refer to these histories as terminal, and to the other histories,
after which a player has to choose an action, as nonterminal.

16.1 Extensive games and subgame perfect equilibrium

An extensive game is specified by a set of players, a set of possible histories, a
player function, which assigns a player to each nonterminal history, and the play-
ers’ preferences over the terminal histories. We focus on games in which every
history is finite.

Definition 16.1: Finite horizon extensive game

A (finite horizon) extensive game 〈N , H , P, (¼i )i∈N 〉 has the following com-
ponents.

Players
A set of players N = {1, . . . , n}.

Histories
A set H of histories, each of which is a finite sequence of actions.
The empty history, ∅, is in H , and if (a 1, a 2, . . . , a t ) ∈ H then also
(a 1, a 2, . . . , a t−1)∈H .

A history h ∈H is terminal if there is no x such that (h,x )∈H . The set of
terminal histories is denoted Z . (We use the notation (h, a 1, . . . , a t ) for
the history that starts with the history h and continues with the actions
a 1, . . . , a t ).

Player function
A function P : H \Z →N , the player function, which assigns a player to
each nonterminal history (the player who moves after the history).
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Preferences
For each player i ∈N , a preference relation ¼i over Z .

We interpret this model as capturing a situation in which every player, when
choosing an action, knows all actions previously chosen. For this reason, the
model is usually called an extensive game with perfect information. A more gen-
eral model, which we do not discuss, allows the players to be imperfectly in-
formed about the actions previously chosen.

The example in the introduction, represented in Figure 16.1, is the extensive
game 〈N , H , P, (¼i )i∈N 〉 in which

• N = {1,2}

• H = {∅, (Out), (In), (In, Cooperate), (In, Fight)} (with Z = {(Out), (In, Cooperate),
(In, Fight)})

• P(∅) = 1 and P(In) = 2

• (In, Cooperate) �1 (Out) �1 (In, Fight) and (Out) �2 (In, Cooperate) �2

(In, Fight).

Notice that we use the notation P(In) instead of P((In)); later we similarly
write P(a 1, . . . , a t ) instead of P((a 1, . . . , a t )).

A key concept in the analysis of an extensive game is that of a strategy. A
player’s strategy is a specification of an action for every history after which the
player has to move.

Definition 16.2: Strategy in extensive game

A strategy of player i ∈N in the extensive game 〈N , H , P, (¼i )i∈N 〉 is a func-
tion that assigns to every history h ∈H \Z for which P(h) = i an action in
{x : (h,x )∈H}, the set of actions available to her after h.

A key word in this definition is “every”: a player’s strategy specifies the action
she chooses for every history after which she moves, even histories that do not
occur if she follows her strategy. For example, in the game in Figure 16.2, one
strategy of player 1 is s 1 with s 1(∅) = A and s 1(B ,G ) = I . This strategy specifies
the action of player 1 after the history (B ,G ) although this history does not occur
if player 1 uses s 1 and hence chooses A at the start of the game. Thus the notion
of a strategy does not correspond to the notion of a strategy in everyday language.
We discuss this issue further in Section 16.2.
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Figure 16.2 An example of an extensive game.

Each strategy profile generates a unique terminal history (a 1 . . . , a T ) as the
players carry out their strategies. The first component of this history, a 1, is the
action s P(∅)(∅) specified by the strategy s P(∅) of player P(∅), who moves at the
start of the game. This action determines the player who moves next, P((a 1)); her
strategy s P(a 1) determines the next action, a 2 = s P(a 1)(a 1), and so forth.

Definition 16.3: Terminal history generated by strategy profile

Let s be a strategy profile for the extensive game 〈N , H , P, (¼i )i∈N 〉. The
terminal history generated by s is (a 1, . . . , a T ) where a 1 = s P(∅)(∅) and
a t+1 = s P(a 1,...,a t )(a 1, . . . , a t ) for t = 1, . . . , T −1.

The main solution concept we use for extensive games is subgame perfect
equilibrium. Before defining this notion, we define a Nash equilibrium of an
extensive game: a strategy profile with the property that no player can induce a
more desirable outcome for herself by deviating to a different strategy, given the
other players’ strategies.

Definition 16.4: Nash equilibrium of extensive game

Let Γ = 〈N , H , P, (¼i )i∈N 〉 be an extensive game. A strategy profile s is a
Nash equilibrium of Γ if for every player i ∈N we have

z (s )¼i z (s−i , r i ) for every strategy r i of player i ,

where, for any strategy profile σ, z (σ) is the terminal history generated
byσ.

The entry game, given in Figure 16.1, has two Nash equilibria: (In, Cooperate)
and (Out, Fight). The latter strategy pair is a Nash equilibrium because given
the incumbent’s strategy Fight, the strategy Out is optimal for the competitor,
and given the competitor’s strategy Out, the strategy Fight is optimal for the
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incumbent. In fact, if the competitor chooses Out, then any strategy for the
incumbent is optimal.

The non-optimality of Fight for the incumbent if the competitor chooses In
does not interfere with the status of (Out, Fight) as a Nash equilibrium: the notion
of Nash equilibrium considers the optimality of a player’s strategy only at the
start of the game, before any actions have been taken.

The notion of subgame perfect equilibrium, by contrast, requires that each
player’s strategy is optimal, given the other players’ strategies, after every possi-
ble history, whether or not the history occurs if the players follow their strategies.
To define this notion, we first define, for any strategy profile s and nonterminal
history h, the outcome (terminal history) that is reached if h occurs and then the
players choose the actions specified by s .

Definition 16.5: Terminal history extending history

Let s be a strategy profile for the extensive game 〈N , H , P, (¼i )i∈N 〉 and
let h be a nonterminal history. The terminal history extending h gener-
ated by s , denoted z (h, s ), is (h, a 1, . . . , a T ) where a 1 = s P(h)(h) and a t+1 =
s P(h,a 1,...,a t )(h, a 1, . . . , a t ) for t = 1, . . . , T −1.

In the game in Figure 16.2, for example, if h = B and the players’ strategies specify
s 1(∅) = A, s 1(B ,G ) = H , s 2(A) = C , and s 3(B ) = G , then the terminal history
extending h generated by s is (B ,G , H ).

Definition 16.6: Subgame perfect equilibrium of extensive game

Let Γ= 〈N , H , P, (¼i )i∈N 〉 be an extensive game. A strategy profile s = (s i )i∈N

is a subgame perfect equilibrium of Γ if for every player i ∈ N and every
nonterminal history h for which P(h) = i we have

z (h, s )¼i z (h, (s−i , r i )) for every strategy r i of player i ,

where, for any history h and strategy profile σ, z (h,σ) is the terminal
history extending h generated by σ.

The difference between this definition and that of a Nash equilibrium is the
phrase “and every nonterminal history h for which P(h) = i ”. The notion of Nash
equilibrium requires that each player’s strategy is optimal at the beginning of the
game (given the other players’ strategies) whereas the notion of subgame perfect
equilibrium requires that it is optimal after every history (given the other players’
strategies), even ones that are not consistent with the strategy profile.



262 Chapter 16. Extensive games

Every subgame perfect equilibrium is a Nash equilibrium, but some Nash
equilibria are not subgame perfect equilibria. In a subgame perfect equilibrium
of the entry game (Figure 16.1), the incumbent’s strategy must specify Coop-
erate after the history In, because the incumbent prefers the terminal history
(In, Cooperate) to the terminal history (In, Fight). Given this strategy of the in-
cumbent, the competitor’s best strategy is In. The Nash equilibrium (Out, Fight)
is not a subgame perfect equilibrium because Fight is not optimal for the incum-
bent after the history In.

Example 16.1: Ultimatum game

Two players have to agree how to allocate two indivisible units of a good
between themselves. If they do not agree then each of them gets noth-
ing. They use the take-it-or-leave-it protocol: Player 1 proposes one of the
three partitions of the two units, which player 2 either accepts or rejects.
Each player cares only about the number of units of the good she gets (the
more the better) and not about the number of units the other player gets.

Denote by (x 1,x 2) the proposal in which i gets x i , with x 1+x 2 = 2. The
situation is modeled by the following extensive game. At the start of the
game (the null history, ∅), player 1 makes one of the three proposals, (2,0),
(1,1), and (0,2), and after each of these proposals player 2 either agrees (Y )
or disagrees (N ).

(2,0)(0,2)
(1, 1)

1

N

0,0

Y

0,2

2
N

0,0

Y

1,1

2
N

0,0

Y

2,0

2

Player 1 has three strategies and player 2 has eight. Each of player 2’s
strategies specifies her reaction to each possible proposal of player 1; ex-
amples are (Y , Y , Y ), in which she accepts all proposals, and (Y , N , N ), in
which she accepts the proposal (0,2) and rejects the two other proposals.

The game has several Nash equilibria. In particular, for any allocation
the game has a Nash equilibrium with that outcome: player 1 proposes
the allocation and player 2 accepts that allocation and rejects the other
two. The strategy pair ((2,0), (N , N , N )) is also a Nash equilibrium, which
yields disagreement.

Consider the Nash equilibrium ((0,2), (Y , N , N )). Player 2’s strategy ac-
cepts only the offer (0,2), which gives her both units. However, her threat
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to reject (1,1) is not credible, because if player 1 proposes that alloca-
tion, player 2 prefers to accept it and get one unit than to reject it and get
nothing.

In any subgame perfect equilibrium, player 2’s action after every pro-
posal of player 1 must be optimal, so that she accepts the proposals (0, 2)
and (1,1). She is indifferent between accepting and rejecting the proposal
(2,0), so either action is possible in a subgame perfect equilibrium. Thus
the only strategies of player 2 consistent with subgame perfect equilibrium
are (Y , Y , Y ) and (Y , Y , N ). Player 1 optimally proposes (2,0) if player 2 uses
the first strategy, and (1,1) if she uses the second strategy. Hence the game
has two subgame perfect equilibria, ((2,0), (Y , Y , Y )) and ((1,1), (Y , Y , N )).

If there are K units of the good to allocate, rather than two, then
also the game has two subgame perfect equilibria, ((K ,0), (Y , . . . , Y )) and
((K −1,1), (Y , . . . , Y , N )). In the first equilibrium player 1 proposes that she
gets all K units and player 2 agrees to all proposals. In the second equilib-
rium player 2 plans to reject only the proposal that gives him no units and
player 1 proposes that player 2 gets exactly one unit.

Example 16.2: Centipede game

Two players, 1 and 2, alternately have the opportunity to stop their inter-
action, starting with player 1; each player has T opportunities to do so.
Whenever a player chooses to continue (C ), she loses $1 and the other
player gains $2. Each player aims to maximize the amount of money she
has at the end of the game.

This situation may be modeled as an extensive game in which the set of
histories consists of 2T nonterminal histories of the form Ct = (C , . . . ,C ),
where t ∈ {0, . . . ,2T − 1} is the number of occurrences of C (C0 = ∅, the
null history), and T +1 terminal histories, C2T (both players always choose
C ) and St = (C , . . . ,C ,S) for t ∈ {0, . . . ,2T − 1}, where t is the number of
occurrences of C (the players choose C in the first t periods and then one
of them chooses S).

After the history Ct , player 1 moves if t is even (including 0) and player
2 moves if t is odd. Each player’s payoff is calculated by starting at 0,
subtracting 1 whenever the player chooses C , and adding 2 whenever the
other player chooses C . The diagram on the next page shows the game for
T = 3. (The shape of the tree is the reason for the name “centipede”.)

Any pair of strategies in which each player plans to stop the game at the
first opportunity is a Nash equilibrium. Given player 2’s plan, player 1 can
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only lose by changing her strategy, and given that player 1 intends to stop
the game immediately, player 2 is indifferent between all her strategies.

In fact, we now show that in every Nash equilibrium player 1 stops the
game immediately. That is, the only terminal history generated by a Nash
equilibrium is S0. For any pair of strategies that generates the terminal his-
tory St with t ≥ 1, the player who moves after the history Ct−1 can increase
her payoff by changing her strategy to one that stops after this history, sav-
ing her the loss of continuing at this history. The terminal history C2T oc-
curs only if each player uses the strategy in which she plays C at every
opportunity, in which case player 2 can increase her payoff by deviating to
the strategy of stopping only at C2T−1.

Although the outcome of every Nash equilibrium is S0, the game has
many Nash equilibria. In every equilibrium player 1 chooses S at the start
of the game and player 2 chooses S after the history (C ), but after longer
histories each player’s strategy may choose either C or S.

However, the game has a unique subgame perfect equilibrium, in
which each player chooses S whenever she moves. The argument is by
induction, starting at the end of the game: after the history C2T−1, player 2
optimally stops the game, and if the player who moves after the history Ct

for t ≥ 1 stops the game, then the player who moves after Ct−1 optimally
does so.

When people play the game in experiments, they tend not to stop it
immediately. There seem to be two reasons for the divergence from equi-
librium. First, many people appear to be embarrassed by stopping the
game to gain $1 while causing the other player to lose $2 when there is an
opportunity for a large mutual gain. Second, people seem to continue at
least for a while because they are not sure of their opponent’s strategic rea-
soning, and given the potential gain they are ready to sacrifice $1 to check
her intentions.

16.2 What is a strategy?

Consider player 1’s strategy (S,C ,C ) in the centipede game with T = 3. Accord-
ing to this strategy, player 1 plans to stop the game immediately, but plans to
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continue at her later moves (after the histories (C ,C ) and (C ,C ,C ,C )). To be
a complete plan of action, player 1’s strategy has to specify a response to ev-
ery possible action of player 2. But a strategy in an extensive game does more
than that. Under the strategy (S,C ,C ) player 1 plans to stop the game immedi-
ately, but specifies also her action in the event she has a second opportunity to
stop the game, an opportunity that does not occur if she follows her own strat-
egy and stops the game immediately. That is, the strategy specifies plans after
contingencies that are inconsistent with the strategy.

In this respect the notion of a strategy in an extensive game does not cor-
respond to a plan of action, which naturally includes actions only after histories
consistent with the plan. In the centipede game with T = 3, player 1 has four nat-
ural plans of action: always continue, and stop at the t th opportunity for t = 1,
2, and 3.

Why do we define a strategy more elaborately than a plan of action? When
player 2 plans her action after the history (C ) she needs to think about what will
happen if she does not stop the game. That is, she needs to think about the action
player 1 will take after the history (C ,C ). The second component of player 1’s
strategy (S,C ,C ), which specifies an action after the history (C ,C ), can be thought
of as player 2’s belief about the action that player 1 will take after (C ,C ) if player
1 does not stop the game. Thus a pair of strategies in the centipede game, and
in other extensive games in which players move more than once, is more than a
pair of plans of action; it embodies also an analysis of the game that contains the
beliefs of the players about what would happen after any history.

16.3 Backward induction

Backward induction is a procedure for selecting strategy profiles in an extensive
game. It is based on the assumption that whenever a player moves and has a
clear conjecture about what will happen subsequently, she chooses an action
that leads to her highest payoff. The procedure starts by considering histories
that are one action away from being terminal, and then works back one step at a
time to the start of the game.

To describe the procedure, we first define the diameter of a history h to be
the number of steps remaining until the end of the game in the longest history
that starts with h.

Definition 16.7: Diameter of history

The diameter of the history h in an extensive game is the largest number K
for which there are actions a 1, . . . , a K such that (h, a 1, . . . , a K ) is a history.

Note that the diameter of a history is zero if and only if the history is terminal, and
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the diameter of the null history is the number of actions in the longest history in
the game.

The backward induction procedure starts by specifying the action chosen by
each player who moves after a history with diameter 1, and then works back in
steps to the start of the game. As it does so, it associates with every history h the
terminal history z (h) that occurs if the game reaches h and then the players take
the actions specified in the previous steps.

In the first step we define z (h) = h for every terminal history h.
In the second step we consider histories with diameter 1. Let h be such a

history, so that one action remains to be taken after h, by player P(h). (In the
game in Figure 16.3, the two such histories are A and (B ,G ), with P(A) = 3 and
P(B ,G ) = 1.) For every action a of P(h) after h, the history (h, a ) has diameter
0 (i.e. it is terminal), and hence z (h, a ) is defined from the first step (it is equal
to (h, a )). From among these actions, let a = a ∗(h) be one that maximizes P(h)’s
payoff over all terminal histories z (h, a ), and set s P(h)(h) = a ∗(h). Note that if
there is more than one such action, we select one of them arbitrarily. (In the
game in Figure 16.3, C is such an action for the history (A), and both H and I
are such actions for the history (B ,G ). Either of these actions can be chosen at
this step.) Define z (h) = z (h, a ∗(h)), the terminal history that occurs if the game
reaches h and then player P(h) chooses a ∗(h).

The procedure continues working backwards until the start of the game. After
step k , for every history h with diameter at most k an action for the player who
moves after h is defined, together with the resulting terminal history z (h), so that
at step k +1, for every history with diameter k +1, we can find an optimal action
for the player who moves after this history. At the end of the process, a strategy
for each player in the game is defined.

Procedure: Backward induction

The backward induction procedure for an extensive game 〈N , H , P, (¼i )i∈N 〉
generates a strategy profile s as follows. For any history h ∈H , denote the
diameter of h by d (h).

Initialization
For each history h with d (h) = 0 (that is, each terminal history), let
z (h) = h.

Inductive step
Assume that the terminal history z (h) is defined for all h ∈ H with
d (h) ∈ {0, . . . , k } and s P(h)(h) is defined for all h ∈ H with d (h) ∈
{1, . . . , k }, where k < d (∅). For each history h with d (h) = k+1, let a ∗(h)
be an action a that is best according to P(h)’s preferences over terminal
histories z (h, a ), and set s P(h)(h) = a ∗(h) and z (h) = z (h, a ∗(h)).
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Step 1: Choosing optimal actions for the player who moves after each history
with diameter 1. The action C is optimal after the history (A). Both H and I are
optimal after the history (B ,G ). The diagrams show the resulting two possible
outcomes of the step.
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Step 3: Choosing optimal actions for the player who moves after the single his-
tory with diameter 3 (the initial history).

Figure 16.3 An example of backward induction. For this game, the procedure selects one
of two strategy profiles, which yield one of the two terminal histories (A,C ) and (B ,G , I ).
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We say that the strategy profile s is generated by backward induction if
for some choice of an optimal action after each history, this procedure
generates s .

The procedure is well-defined only if an optimal action exists whenever the
procedure calls for such an action. In particular it is well-defined for any game
with a finite number of histories. If the number of actions after some history is
not finite, an optimal action may not exist, in which case the procedure is not
well-defined.

We now show that any strategy profile generated by the backward induction
procedure is a subgame perfect equilibrium. To do so, we first give an alternative
characterization of a subgame perfect equilibrium of an extensive game.

Recall that a strategy profile s is a subgame perfect equilibrium if after no his-
tory h does any player have a strategy that leads to a terminal history she prefers
to the terminal history generated by s after h. In particular, for any history, the
player who moves cannot induce an outcome better for her by changing only her
action after that history, keeping the remainder of her strategy fixed. We say that
a strategy profile with this property satisfies the one-deviation property.

Definition 16.8: One-deviation property of strategy profile

Let Γ = 〈N , H , P, (¼i )i∈N 〉 be an extensive game. A strategy profile s for
Γ satisfies the one-deviation property if for every player i ∈ N and every
nonterminal history h ∈H \Z for which P(h) = i we have

z (h, s ) ¼i z (h, (s−i , r i )) for every strategy r i of player i

that differs from s i only in the action it specifies after h.

A profile of strategies that is a subgame perfect equilibrium satisfies the one-
deviation property. The reason is that a subgame perfect equilibrium requires,
for any history and any player, that the player’s strategy is optimal at that history
among all strategies, whereas the one deviation property requires the optimal-
ity to hold only among the strategies that differ in the action planned after that
history.

We now show that the converse is true: any strategy profile satisfying the one-
deviation property is a subgame perfect equilibrium. To illustrate the argument
suppose, to the contrary, that the strategy profile s satisfies the one-deviation
property, generating the payoff u i for some player i , but that after some history h
at which i moves, i can obtain the payoff v i > u i by changing the action specified
by her strategy at both h, from say a to a ′, and at some history h ′ that extends h,
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Figure 16.4 An illustration of the argument that a strategy profile that satisfies the
one-deviation property is a subgame perfect equilibrium.

from say b to b ′ (given the other players’ strategies). (See Figure 16.4.) Because
s satisfies the one-deviation property, the payoff s generates for i starting at h ′

(after i changes her action only at h), say w i , is at most u i . But then v i > w i

and hence at h ′ player i can induce a higher payoff than w i by changing only her
action at h ′ from b to b ′ holding the rest of her strategy fixed, contradicting the
assumption that s satisfies the one-deviation property.

Proposition 16.1: One-deviation property and SPE

For an extensive game (in which every terminal history is finite) a strategy
profile satisfies the one-deviation property if and only if it is a subgame
perfect equilibrium.

Proof

As we explained earlier, if a strategy profile is a subgame perfect equilib-
rium then it satisfies the one-deviation property.

Now let s be a strategy profile that satisfies the one-deviation property.
Assume, contrary to the claim, that s is not a subgame perfect equilibrium.
Then for some player i there is a history h with P(h) = i and at least one
strategy of player i that differs from s i only for histories that start with
h and generates a terminal history that i prefers to z (h, s ) (the terminal
history extending h generated by s ). Among these strategies let r i be one
for which the number of histories after which the action it specifies differs
from the action that s i specifies is minimal. Then z (h, (s−i , r i )) �i z (h, s ).
Let h∗ be a longest history for which r i (h∗) 6= s i (h∗) and let q i differ from r i

only in that q i (h∗) = s i (h∗), so that q i and s i are identical after any history
that extends h∗ and q i differs from s i after fewer histories than does r i . By
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the one-deviation property z (h∗, (s−i ,q i ))¼i z (h∗, (s−i , r i )). Therefore

z (h, (s−i ,q i )) = z (h∗, (s−i ,q i ))¼i z (h∗, (s−i , r i )) = z (h, (s−i , r i ))�i z (h, s ),

contradicting the definition of r i .

Note that the proof uses the assumption that all histories are finite, and in-
deed if not all histories are finite, a strategy profile may satisfy the one deviation
property and not be a subgame perfect equilibrium (see Problem 9).

In many games, this result greatly simplifies the verification that a strategy
profile is a subgame perfect equilibrium, because it says that we need to check
only whether, for each history, the player who moves can increase her payoff by
switching to a different action after that history.

We now show that any strategy profile generated by the procedure of back-
ward induction is a subgame perfect equilibrium, by arguing that it satisfies the
one-deviation property.

Proposition 16.2: Backward induction and SPE

For an extensive game (in which every terminal history is finite), a strategy
profile is generated by the backward induction procedure if and only if it
is a subgame perfect equilibrium.

Proof

A strategy profile generated by the backward induction procedure by con-
struction satisfies the one-deviation property. Thus by Proposition 16.1 it
is a subgame perfect equilibrium.

Conversely, if a strategy profile is a subgame perfect equilibrium then it
satisfies the one-deviation property, and hence is generated by the back-
ward induction procedure where at each step we choose the actions given
by the strategy profile.

An immediate implication of this result is that every extensive game with a
finite number of histories has a subgame perfect equilibrium, because for every
such game the backward induction procedure is well-defined.

Proposition 16.3: Existence of SPE in finite game

Every extensive game with a finite number of histories has a subgame
perfect equilibrium.
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Chess is an example of a finite extensive game. In the game, two players
move alternately. The terminal histories are of three types: player 1 wins, player
2 wins, and the players draw. Each player prefers to win than to draw than to
lose. The game is finite because once a position is repeated three times, a draw is
declared. Although the number of histories is finite, it is huge, and currently no
computer can carry out the backward induction procedure for the game. How-
ever, we know from Proposition 16.3 that chess has a subgame perfect equilib-
rium. Modeled as a strategic game, chess is strictly competitive, so we know also
(Proposition 15.3) that the payoffs in all Nash equilibria are the same and the
Nash equilibrium strategies are maxmin strategies: either one of the players has
a strategy that guarantees she wins, or each player has a strategy that guarantees
the outcome is at least a draw.

Ticktacktoe is another example of a finite extensive game that is strictly com-
petitive. For ticktacktoe, we know that each player can guarantee a draw. Chess
is more interesting than ticktacktoe because whether a player can guarantee a
win or a draw in chess is not known; the outcome of a play of chess depends on
the player’s cognitive abilities more than the outcome of a play of ticktacktoe.
Models of bounded rationality, which we do not discuss in this book, attempt to
explore the implications of such differences in ability.

16.4 Bargaining

This section presents several models of bargaining, and in doing so illustrates
how an extensive game may be used to analyze an economic situation. Bargain-
ing is a typical economic situation, as it involves a mixture of common and con-
flicting interests. The parties have a common interest in reaching an agreement,
but differ in their evaluations of the possible agreements. Bargaining models
are key components of economic models of markets in which exchange occurs
through pairwise matches and the terms of exchange are negotiated. These mar-
ket models differ from the market models presented in Part II of the book in that
the individuals do not perceive prices as given.

For simplicity we confine ourselves to the case in which two parties, 1 and
2, bargain over the partition of a desirable pie of size 1. The set of possible
agreements is

X = {(x 1,x 2) : x 1+x 2 = 1 and x i ≥ 0 for i = 1,2}.

The outcome of bargaining is either one of these agreements or disagreement.
We assume that the players care only about the agreement they reach and pos-
sibly the time at which they reach it, not about the path of the negotiations that
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precede agreement. In particular, a player does not suffer if she agrees to an of-
fer that is worse than one she previously rejected. Further, we assume that each
party regards a failure to reach an agreement as equivalent to obtaining none of
the pie.

We study several models of bargaining. They differ in the specification of the
order of moves and the options available to each player whenever she moves. As
we will see, the details of the bargaining procedure critically affect the outcome
of bargaining.

16.4.1 Take it or leave it (ultimatum game)

Player 1 proposes a division of the pie (a member of X ), which player 2 then
either accepts or rejects. (Example 16.1 is a version of this game in which the set
of possible agreements is finite.)

Definition 16.9: Ultimatum game

The ultimatum game is the extensive game 〈{1,2}, H , P, (¼i )i∈{1,2}〉 with the
following components.

Histories
The set H of histories consists of

• ∅ (the initial history)

• (x ) for any x ∈ X (player 1 makes the proposal x )

• (x , Y ) for any x ∈ X (player 1 makes the proposal x , which player 2
accepts)

• (x , N ) for any x ∈ X (player 1 makes the proposal x , which player 2
rejects).

Player function
P(∅) = 1 (player 1 moves at the start of the game) and P(x ) = 2 for all
x ∈ X (player 2 moves after player 1 makes a proposal).

Preferences
The preference relation ¼i of each player i is represented by the payoff
function u i with u i (x , Y ) = x i and u i (x , N ) = 0 for all x ∈ X .

The game is illustrated in Figure 16.5. Note that this diagram (unlike the dia-
grams of previous games) does not show all the histories. It represents player 1’s
set of (infinitely many) actions by a shaded triangle, and shows only one of her
actions, x , and the actions available to player 2 after the history (x ).
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Figure 16.5 An illustration of the ultimatum game.

Player 1’s set of strategies in the ultimatum game is X , and each strategy of
player 2 is a function that for each x ∈ X specifies either Y or N . The game has
a unique subgame perfect equilibrium, in which player 1 proposes that she gets
the entire pie and player 2 accepts all proposals.

Proposition 16.4: SPE of ultimatum game

The ultimatum game has a unique subgame perfect equilibrium, in which
player 1 proposes (1,0) and player 2 accepts all proposals.

Proof

The strategy pair is a subgame perfect equilibrium: given that player 2 ac-
cepts all proposals, the proposal (1, 0) is optimal for player 1, and after any
proposal, acceptance (Y ) is optimal for player 2.

Now let s be a subgame perfect equilibrium. The only optimal response
of player 2 to a proposal x with x 2 > 0 is acceptance, so s 2(x ) = Y for any
x with x 2 > 0. Thus if s 1(∅) = (1− ε,ε) with ε > 0 (which player 2 accepts),
then player 1 can do better by proposing (1− 1

2
ε, 1

2
ε), which player 2 also

accepts. Hence s 1(∅) = (1,0). Finally, s 2(1, 0) = Y because if player 2 rejects
(1,0) then player 1 gets 0 and can do better by making any other proposal,
which player 2 accepts.

Notice that after the proposal (1,0), player 2 is indifferent between Y and
N . Nevertheless, the game has only one subgame perfect equilibrium, in which
player 2 accepts (1,0). In contrast, in Example 16.1, where the number of possible
agreements is finite, the game has also a subgame perfect equilibrium in which
player 2 rejects the proposal (1, 0).

A long history of experiments has demonstrated that the unique subgame
perfect equilibrium is inconsistent with human behavior. For example, a pop-
ulation of 19,000 students from around the world similar to the readership of
this book have responded to a question on http://arielrubinstein.org/gt

http://arielrubinstein.org/gt
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asking them to imagine they have to divide $100 between themselves and an-
other person. The most common proposal, chosen by about 50% of subjects, is
the division ($50,$50). Only about 11% choose to offer the other person $0 or $1,
as in the subgame perfect equilibrium.

Rather than necessarily calling into question the concept of subgame per-
fect equilibrium, these results point to the unrealistic nature of the players’ pref-
erences in the game. First, some people have preferences for fairness, which
lead them to most prefer an equal division of the pie. Second, many people
are insulted by low offers, and hence reject them. When players’ preferences
involve such considerations, the (modified) game may have a subgame perfect
equilibrium in which the proposer receives significantly less than the entire pie.

16.4.2 Finite horizon with alternating offers

Now assume that after player 2 rejects player 1’s offer, she can make a counterof-
fer, which player 1 can accept or reject, and that the players can continue to al-
ternate proposals in this way for up to T periods. If the offer made in period T is
rejected, the game ends with disagreement.

Definition 16.10: Finite-horizon bargaining game with alternating offers

A finite-horizon bargaining game with alternating offers is an extensive
game 〈{1,2}, H , P, (¼i )i∈{1,2}〉with the following components.

Histories
The set H of histories consists, for some positive integer T , of

• ∅ (the initial history)

• (x1, N ,x2, N , . . . ,xt ) for any x1, . . . ,xt ∈ X and 1 ≤ t ≤ T (proposals
through period t −1 are rejected, and the proposal in period t is xt )

• (x1, N ,x2, N , . . . ,xt , N ) for any x1, . . . ,xt ∈ X and 1≤ t ≤ T (proposals
through period t are rejected)

• (x1, N ,x2, N , . . . ,xt−1, N ,xt , Y ) for any x1, . . . ,xt ∈ X and 1 ≤ t ≤ T
(proposals through period t − 1 are rejected, and the proposal in
period t is accepted).

Player function
Let i τ = 1 if τ is odd and i τ = 2 if τ is even. Then

• P(∅) = 1 (player 1 makes the first proposal)

• P(x1, N ,x2, N , . . . ,xt ) = i t+1 for t = 1, . . . , T (player i t+1 responds to



16.4 Bargaining 275

the offer made by i t )

• P(x1, N ,x2, N , . . . ,xt , N ) = i t+1 for t = 1, . . . , T − 1 (player i t+1 makes
the proposal at the beginning of period t +1).

Preferences
The preference relation ¼i of each player i is represented by
the payoff function u i with u i (x1, N ,x2, N , . . . ,xt , Y ) = x i

t and
u i (x1, N ,x2, N , . . . , xT , N ) = 0.

We show that in this game all the bargaining power belongs to the player who
makes the proposal in the last period: in every subgame perfect equilibrium this
player receives the whole pie.

Proposition 16.5: SPE of finite-horizon game with alternating offers

In every subgame perfect equilibrium of a finite-horizon bargaining game
with alternating offers, the payoff of the player who makes a proposal in
the last period is 1 and the payoff of the other player is 0.

Proof

Let i be the player who proposes in period T , let j be the other player,
and let e (i ) be the partition in which i gets the whole pie. The game has
a subgame perfect equilibrium in which player i proposes e (i ) whenever
she makes a proposal and accepts only e (i ) whenever she responds to a
proposal, and player j always proposes e (i ) and accepts all proposals.

The game has many subgame perfect equilibria but all of them end with
i getting all the pie. Let s be a subgame perfect equilibrium. Consider
a history h = (x1, N ,x2, N , . . . ,xT−1, N ) in which T − 1 proposals are made
and rejected. The argument in the proof of Proposition 16.4 implies that
s i (h) = e (i ) and that player j accepts any proposal of player i in period T .

Now if i does not get the whole pie in the outcome of s , she can deviate
profitably to the strategy r i in which she rejects any proposal in any period
and always proposes e (i ). The outcome of the pair of strategies r i and s j

is agreement on e (i ) in period T at the latest.

16.4.3 Infinite horizon with one-sided offers

The result in the previous section demonstrates the significance of the existence
of a final period in which a proposal can be made. We now study a model in
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which no such final period exists: the players believe that after any rejection
there will be another opportunity to agree. For now, we assume that only player
1 makes proposals. Since we do not limit the number of bargaining periods,
we need to use a natural extension of the model of an extensive game in which
terminal histories can be infinite.

Definition 16.11: Infinite-horizon bargaining game with one-sided offers

The infinite-horizon bargaining game with one-sided offers is the extensive
game 〈{1,2}, H , P, (¼i )i∈{1,2}〉with the following components.

Histories
The set H of histories consists of

• ∅ (the initial history)

• (x1, N ,x2, N , . . . ,xt−1, N ,xt ) for any x1, . . . ,xt ∈ X and t ≥ 1 (propos-
als through period t − 1 are rejected, and player 1 proposes xt in
period t )

• (x1, N ,x2, N , . . . ,xt , N ) for any x1, . . . ,xt ∈ X and t ≥ 1 (proposals
through period t are rejected)

• (x1, N ,x2, N , . . . ,xt−1, N ,xt , Y ) for any x1, . . . ,xt ∈ X and t ≥ 1 (pro-
posals through period t − 1 are rejected, and player 1’s proposal in
period t is accepted).

• (x1, N ,x2, N , . . . ,xt , N , . . . ) for any infinite sequence of proposals
x1, . . . ,xt , . . . (all proposals are rejected).

Player function
P(∅) = P(x1, N ,x2, N , . . . , xt , N ) = 1 and P(x1, N ,x2, N , . . . ,xt ) = 2 .

Preferences
The preference relation ¼i of each player i is represented by the payoff
function u i with

u i (x1, N ,x2, N , . . . , xt , Y ) = x i
t and u i (x1, N ,x2, N , . . . ,xt , N , . . .) = 0.

In this game, every partition of the pie is the outcome of some subgame per-
fect equilibrium. In fact, for every partition of the pie, the game has a subgame
perfect equilibrium in which agreement is reached immediately on that parti-
tion. Thus when the horizon is infinite, the fact that only player 1 makes offers
does not give her more bargaining power than player 2.
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Proposition 16.6: SPE of infinite-horizon game with one-sided offers

For every partition x∗ ∈ X , the infinite-horizon bargaining game with one-
sided offers has a subgame perfect equilibrium in which the outcome is
immediate agreement on x∗. The game has also a subgame perfect equi-
librium in which the players never reach agreement.

Proof

We first show that the following strategy pair is a subgame perfect equilib-
rium in which the players reach agreement in period 1 on x∗.

Player 1
Always propose x∗.

Player 2
Accept an offer y if and only if y 2 ≥ x 2

∗ .

After the initial history or any history ending with rejection, player 1
can do no better than follow her strategy, because player 2 never accepts
less than x 2

∗ . After any history ending with an offer y for which y 2 < x 2
∗ ,

player 2 can do no better than follow her strategy, because if she rejects
the proposal then player 1 subsequently continues to propose x∗. After
any history ending with an offer y for which y 2 ≥ x 2

∗ , player 2 can do no
better than follow her strategy and accept the proposal, because player 1
never proposes that player 2 gets more than x 2

∗ . Thus the strategy pair is a
subgame perfect equilibrium.

We now show that the following strategy pair is a subgame perfect equi-
librium in which the players never reach agreement.

Player 1
After the initial history and any history in which all proposals are (1,0),
propose (1,0). After any other history, propose (0,1).

Player 2
After any history in which all proposals are (1,0), reject the proposal.
After any other history, accept the proposal only if it is (0,1).

Consider first player 1. After each history, if player 1 follows her strategy
the outcome is either agreement on (0,1) or disagreement, both of which
yield the payoff 0. Any change in player 1’s strategy after any history also
generates disagreement or agreement on (0,1), and thus does not make
her better off.
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Now consider player 2. After a history in which player 1 has proposed
only (1,0), player 2’s following her strategy leads to the players’ never
reaching agreement, and any change in her strategy leads either to the
same outcome or to agreement on (1,0), which is no better for her. After
a history in which player 1 has proposed a partition different from (1,0),
player 2’s following her strategy leads to her favorite agreement, (0,1).

The equilibrium in which the players never reach agreement may be inter-
preted as follows. Initially, player 2 expects player 1 to insist on getting the whole
pie and she plans to reject such a proposal. When player 1 makes any other pro-
posal, player 2 interprets the move as a sign of weakness on the part of player 1
and expects player 1 to yield and offer her the whole pie. This interpretation of an
attempt by player 1 to reach an agreement by offering player 2 a positive amount
of the pie deters player 1 from doing so.

16.4.4 Infinite horizon with one-sided offers and discounting

We now modify the model in the previous section by assuming that each player
prefers to receive pie earlier than later. Specifically, we assume that the payoff of
each player i at a terminal history in which agreement on x is reached at time t
is (δi )t x i , where δi ∈ (0,1).

Definition 16.12: Infinite-horizon bargaining game with one-sided offers
and discounting

An infinite-horizon bargaining game with one-sided offers and discounting
is an extensive game that differs from an infinite-horizon bargaining game
with one-sided offers only in that the payoff of player i to an agreement
on x in period t is (δi )t x i for i = 1, 2, where δi ∈ (0,1). For notational
economy we write δ1 =α and δ2 = β .

The first strategy pair in the proof of Proposition 16.6, in which player 1 al-
ways proposes x∗ and player 2 accepts only proposals in which she receives at
least x 2

∗ , is not a subgame perfect equilibrium of this game unless x 2
∗ = 0. If

x 2
∗ > 0, consider the history in which at the beginning of the game player 1 pro-

poses (x 1
∗ + ε,x 2

∗ − ε) with ε > 0 small enough that x 2
∗ − ε > βx 2

∗ . Given player 1’s
strategy, player 2’s strategy (which in particular rejects the proposal) gives her x 2

∗

at a later period; accepting x 2
∗ − ε is better for player 2.

We now show that the introduction of discounting makes a huge difference
to the set of subgame perfect equilibria: it restores the bargaining power of the
player who makes all offers, even if player 2’s discount factor is close to 1.
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Proposition 16.7: SPE of infinite-horizon game with one-sided offers
and discounting

For any values of the discount factors α andβ , an infinite-horizon bargain-
ing game with one-sided offers and discounting has a unique subgame
perfect equilibrium, in which player 1 gets all the pie immediately.

Proof

First note that the strategy pair in which player 1 always proposes (1,0) and
player 2 accepts all proposals is a subgame perfect equilibrium.

Now let M be the supremum of player 2’s payoffs over all subgame per-
fect equilibria. Consider a history (x ) (player 1 proposes x ). If player 2 re-
jects x , the remainder of the game is identical to the whole game. Thus in
any subgame perfect equilibrium any strategy that rejects x yields player 2
at most M with one period of delay. Hence in a subgame perfect equilib-
rium player 2 accepts x if x 2 > βM . So the infimum of player 1’s payoffs
over all subgame perfect equilibria is at least 1−βM . Therefore the supre-
mum of player 2’s payoffs M does not exceed βM , which is possible only
if M = 0 (given β < 1).

Given that player 2’s payoff in every subgame perfect equilibrium is 0,
she accepts all offers x in which x 2 > 0. Player 1’s payoff in every subgame
perfect equilibrium is 1 because for any strategy pair in which her payoff
is u < 1 she can deviate and propose (u +ε,1−u −ε) with ε < 1−u , which
player 2 accepts. Thus in any subgame perfect equilibrium player 1 offers
(1,0) and player 2 accepts all offers.

16.4.5 Infinite horizon with alternating offers and discounting

Finally consider a model in which the horizon is infinite, the players alternate
offers, and payoffs obtained after period 1 are discounted.

Definition 16.13: Infinite-horizon bargaining game with alternating
offers and discounting

An infinite-horizon bargaining game with alternating offers and discount-
ing is an extensive game 〈{1,2}, H , P, (¼i )i∈{1,2}〉 with the following compo-
nents, where i t = 1 if t is odd and i t = 2 if t is even.

Histories
The set H of histories consists of
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• ∅ (the initial history)

• (x1, N ,x2, N , . . . ,xt ) for any x1, . . . ,xt ∈ X and t ≥ 1 (proposals
through period t − 1 are rejected, and the proposal in period t is
xt )

• (x1, N ,x2, N , . . . ,xt , N ) for any x1, . . . ,xt ∈ X and t ≥ 1 (proposals
through period t are rejected)

• (x1, N ,x2, N , . . . ,xt−1, N ,xt , Y ) for any x1, . . . ,xt ∈ X and t ≥ 1 (pro-
posals through period t −1 are rejected and the proposal in period t
is accepted)

• (x1, N ,x2, N , . . . ,xt , N , . . . ) for any infinite sequence of proposals
x1, . . . ,xt , . . . (all proposals are rejected).

Player function
The player function is defined as follows

• P(∅) = 1 (player 1 makes the first proposal)

• P(x1, N ,x2, N , . . . ,xt ) = i t+1 for t ≥ 1 (player i t+1 responds to the
offer made by i t )

• P(x1, N ,x2, N , . . . ,xt , N ) = i t+1 for t ≥ 1 (player i t+1 makes the pro-
posal at the beginning of period t +1).

Preferences
The preference relation ¼i of each player i is represented by the pay-
off function u i with u i (x1, N ,x2, N , . . . ,xt , Y ) = (δi )t x i

t for t ≥ 1 and
u i (x1, N ,x2, N , . . . , xt , N , . . .) = 0 for i = 1, 2, where δi ∈ (0,1). For no-
tational economy we write δ1 =α and δ2 = β .

Giving player 2 the opportunity to make offers restores her bargaining power.
We now show that the game has a unique subgame perfect equilibrium, in which
the players’ payoffs depend on their discount factors.

Proposition 16.8: SPE of infinite-horizon game with alternating offers
and discounting

An infinite-horizon bargaining game with alternating offers and discount-
ing has a unique subgame perfect equilibrium, in which

• player 1 always proposes x∗ and accepts a proposal x if and only if
x 1 ≥ y 1

∗
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• player 2 always proposes y∗ and accepts a proposal y if and only if y 2 ≥
x 2
∗

where

x∗ =

�
1−β

1−αβ
,
β (1−α)

1−αβ

�

and y∗ =

�
α(1−β )

1−αβ
,

1−α

1−αβ

�

.

Proof

Note that the pair of proposals x∗ and y∗ is the unique solution of the pair
of equations αx 1 = y 1 and βy 2 = x 2.

Step 1 The strategy pair is a subgame perfect equilibrium.

Proof. First consider a history after which player 1 makes a proposal. If
player 1 follows her strategy, she proposes x∗, which player 2 accepts,
resulting in player 1’s getting x 1

∗ immediately. Given player 2’s strategy,
player 1 can, by changing her strategy, either obtain an agreement not bet-
ter than x∗ in a later period or induce perpetual disagreement. Thus she
has no profitable deviation.

Now consider a history after which player 1 responds to a proposal y .
If y 1 ≥ y 1

∗ , player 1’s strategy calls for her to accept the proposal, result-
ing in her getting y 1 immediately. If she deviates (and in particular rejects
the proposal), then the outcome is not better for her than getting x∗ at least
one period later. Thus any deviation generates for her a payoff of at most
αx 1
∗ = y 1

∗ ≤ y 1, so that she is not better off deviating from her strategy.
If y1 < y 1

∗ , player 1’s strategy calls for her to reject the proposal, in which
case she proposes x∗, which player 2 accepts, resulting in x∗ one period
later. Any deviation leads her to either accept the proposal or to obtain
offers not better than x∗ at least one period later. Given αx 1

∗ = y 1
∗ , she is

thus not better off accepting the proposal.
The argument for player 2 is similar. Ã

Step 2 No other strategy pair is a subgame perfect equilibrium.

Proof. Let G i be the game following a history after which player i makes
a proposal. (All such games are identical.) Let M i be the supremum of
player i ’s payoffs in subgame perfect equilibria of G i and let m i be the
infimum of these payoffs.
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We first argue that m 2 ≥ 1− αM 1. If player 1 rejects player 2’s initial
proposal in G 2, play continues to G 1, in which player 1’s payoff is at most
M 1. Thus in any subgame perfect equilibrium player 1 optimally accepts
any proposal that gives her more than αM 1, so that player 2’s payoff in any
equilibrium of G 2 is not less than 1−αM 1. Hence m 2 ≥ 1−αM 1.

We now argue that M 1 ≤ 1− βm 2. If player 2 rejects player 1’s initial
proposal in G 1, play continues to G 2, in which player 2’s payoff is at least
m 2. Thus player 2 optimally rejects any proposal that gives her less than
βm 2, so that in no subgame perfect equilibrium of G 1 is player 1’s payoff
higher than 1−βm 2. Hence M 1 ≤ 1−βm 2.

These two inequalities imply that 1−αM 1 ≤m 2 ≤ (1−M 1)/β and hence
M 1 ≤ (1− β )/(1− αβ ) = x 1

∗ . By Step 1, M 1 ≥ x 1
∗ . Thus M 1 = x 1

∗ . Since
1−αx 1

∗ = (1−x 1
∗ )/β = y 2

∗ we have m 2 = y 2
∗ .

Repeating these arguments with the roles of players 1 and 2 reversed
yields M 2 = y 2

∗ and m 1 = x 1
∗ , so that in every subgame perfect equilibrium

of G 1 the payoff of player 1 is x 1
∗ and in every subgame perfect equilibrium

of G 2 the payoff of player 2 is y 2
∗ .

Now, in G 1 player 2, by rejecting player 1’s proposal, can get at least
βy 2
∗ = x 2

∗ . Thus in every subgame perfect equilibrium of G 1 her payoff
is x 2

∗ . Payoffs of x 1
∗ for player 1 and x 2

∗ for player 2 are possible only if
agreement is reached immediately on x∗, so that in every subgame perfect
equilibrium of G 1 player 1 proposes x∗ and player 2 accepts this proposal.
Similarly, in every subgame perfect equilibrium of G 2 player 2 proposes
y ∗ and player 1 accepts this proposal. Thus the strategy pair given in the
proposition is the only subgame perfect equilibrium of the game. Ã

Notice that as a player values future payoffs more (becomes more patient),
given the discount factor of the other player, the share of the pie that she re-
ceives increases. As her discount factor approaches 1, her equilibrium share
approaches 1, regardless of the other player 2’s (given) discount factor.

If the players are equally patient, with α = β = δ, the equilibrium payoff of
player 1 is 1/(1+δ) and that of player 2 is δ/(1+δ). Thus the fact that player 1
makes the first proposal confers on her an advantage, but one that diminishes as
both players become more patient. When δ is close to 1, the equilibrium payoff
of each player is close to 1

2
. That is, when the players are equally patient and

value future payoffs almost as much as they value current payoffs, the unique
subgame perfect equilibrium involves an almost equal split of the pie.

In the subgame perfect equilibrium, agreement is reached immediately. In
Problem 11 you are asked to analyze the game with different preferences: the
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payoff of each player i for an agreement on x in period t is x i − c i t for some c 1,
c 2 > 0 (rather than (δi )t x i ). When c 1 6= c 2 this game also has a unique subgame
perfect equilibrium in which agreement is reached immediately. However, as you
are asked to show in Problem 12b, when c 1 = c 2 the game has subgame perfect
equilibria in which agreement is reached after a delay.

16.5 Repeated games

We end the chapter with an introduction to the family of repeated games. In a
repeated game, the same set of players engages repeatedly in a fixed strategic
game. We model a repeated game using an extension of the notion of an exten-
sive game that allows players to move simultaneously, and apply to the model
the solution concepts of Nash equilibrium and subgame perfect equilibrium.

To motivate the main idea, consider the Prisoner’s dilemma. In this game,
the pair of actions (C ,C ), which we can think of as a cooperative outcome, is not
a Nash equilibrium. But if the players repeatedly play the game, the outcome in
which (C ,C ) occurs in every period may be a Nash equilibrium. If each player
plans to choose C as long as the other player does so, and plans to switch to D
for long enough to erase the other player’s one-period gain if she ever deviates to
D , then neither player has an incentive to deviate from her plan.

We distinguish between repeated games with a finite horizon and those with
an infinite horizon. As for bargaining games, the distinction reflects two types of
long term interaction. A game with a finite horizon fits a situation where the play-
ers are fully aware of the last period; one with an infinite horizon captures a sit-
uation in which every player believes that after each period there will be another
one.

To analyze a repeated game, we need to specify the players’ preferences over
sequences of action profiles. We derive these preferences from payoff functions
that represent the players’ preferences in the underlying strategic game. For con-
venience, in the remainder of this section we refer to a tuple 〈N ,{Ai }i∈N ,{u i }i∈N 〉,
where N is a set of players, for each player i ∈ N the set Ai is the set of actions of
player i , and for each i ∈N the function u i : A→R represents player i ’s preferences
over the set A of outcomes, simply as a strategic game.

A key concept in the analysis of the repeated games derived from a strategic
game G = 〈N ,{Ai }i∈N ,{u i }i∈N 〉 is the profile (v i (G ))i∈N of numbers given by

v i (G ) = min
a−i∈A−i

max
a i∈Ai

u i (a i , a−i ) for all i ∈N . (16.1)

The number v i (G ) is the lowest payoff in G that the other players can inflict on
player i . That is, (i) whatever the other players do, player i can respond by ob-
taining at least v i (G ) and (ii) there is a list of actions for N \{i }, which we denote
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by p (i ), that guarantees that i ’s payoff is no higher than v i (G ). A profile (w i )i∈N

of numbers is individually rational if w i ≥ v i (G ) for all i ∈ N . Note that if a is a
Nash equilibrium of G then u i (a )≥ v i (G ) for every player i .

16.5.1 Finitely repeated games

We start with the definition of the game in which for some positive integer T
the strategic game G is played in each period t = 1, . . . , T . In this game, in every
period t each player is fully informed about the action chosen by each player in
the previous t −1 periods, and each player’s payoff is the sum of her payoffs in G
in the T periods.

Definition 16.14: Finitely repeated game

Let G = 〈N ,{Ai }i∈N ,{u i }i∈N 〉 be a strategic game and let T be a positive
integer. The T-period repeated game of G is the tuple 〈G , T, H , P, (¼i )i∈N 〉
where

Histories
H consists of ∅ (the initial history) and all sequences (a 1, . . . , a t ) for t =
1, . . . , T and a k ∈ A =×i∈N Ai for k = 1, . . . , t (the outcomes in the first t
plays of the game)

Player function
P is a function that assigns to each nonterminal history h (that is, mem-
ber of H with length less than T ) the set N (all players move after every
nonterminal history)

Preferences
for each i ∈ N , ¼i is a preference relation over the terminal histories
(player i ’s preferences over sequences (a 1, . . . , a T ) of outcomes of G )
that is represented by the function

∑T
t=1 u i (a t ).

A strategy for player i in a T -period repeated game is a function that attaches
to each nonterminal history an action in Ai . Given a profile (s i )i∈N of strate-
gies, the outcome O((s i )i∈N ) of the game is the terminal history (a t )t=1,...,T with
a i

1 = s i (∅) and a i
t = s i (a 1, . . . , a t−1) for all i ∈ N and t = 2, . . . , T . A Nash equilib-

rium is a strategy profile for which no player can increase her payoff by changing
her strategy. A subgame perfect equilibrium is a strategy profile (s i )i∈N for which
there is no history h and player i such that by changing her strategy after histo-
ries that extend h, player i can induce a terminal history that extends h that she
prefers to the one that extends h generated by (s i )i∈N .



16.5 Repeated games 285

We first show that for a strategic game that has a unique Nash equilibrium,
like the Prisoner’s dilemma, repetition does not lead to any new outcomes in a
subgame perfect equilibrium.

Proposition 16.9: SPE of finitely repeated game of game with unique
Nash equilibrium

Let G be a strategic game and let T be a positive integer. If G has a
unique Nash equilibrium (a i

∗)i∈N then the T -period repeated game of G
has a unique subgame perfect equilibrium (s i

∗)i∈N , with s i
∗(h) = a i

∗ for every
history h and every player i .

Proof

The strategy profile (s i
∗)i∈N is a subgame perfect equilibrium because a de-

viation by any player in any period does not increase the player’s payoff in
the period and has no effect on the other players’ future actions.

To show that there is no other subgame perfect equilibrium, let (s i )i∈N

be a subgame perfect equilibrium and let h be a longest history after which
the outcome (b i )i∈N of G generated by (s i )i∈N is not (a i

∗)i∈N . Given that
(b i )i∈N is not a Nash equilibrium of G , some player j can increase her pay-
off by deviating from b j . This deviation does not affect the outcome in any
future period because these outcomes occur after histories longer than h
and hence are all equal to (a i

∗)i∈N . Thus j ’s deviation increases her payoff.

For the T -period repeated game of the Prisoner’s dilemma, the outcome in
which D is chosen by each player in each period is not merely the only subgame
perfect equilibrium outcome, but is also the only Nash equilibrium outcome. To
see why, let (s 1, s 2) be a Nash equilibrium and let t be the last period for which
the outcome Ot (s 1, s 2) 6= (D, D). Suppose that according to s i , player i chooses C
after the history h = (O1(s 1, s 2), . . . ,Ot−1(s 1, s 2)). Then by deviating to D in period t
following the history h and continuing to play D from period t + 1 on, player i
increases the sum of her payoffs.

This argument can be extended to the T -period repeated game of any strate-
gic game G that has a unique Nash equilibrium (a i

∗) and the payoff of each
player i in this equilibrium is the number v i (G ) defined in (16.1). Let (s i ) be
a Nash equilibrium of the repeated game. Suppose that t is the last period for
which the outcome of (s i ) is not (a i

∗) and denote the action profile chosen in this
period by xt . Let b i be an action of player i for which u i (b i ,x−i

t ) > u i (xt ). Then
the strategy of player i that differs from s i in that it chooses b i after Ot−1((s i )i∈N )
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and in each subsequent period chooses an action that yields i a payoff of at least
v i (G ), given the other players’ actions, increases the sum of her payoffs.

Contrast this observation with the analysis of the following strategic game G .

C D E
C 6,6 0,7 0,0
D 7,0 1,1 0,0
E 0,0 0,0 −1,−1

This game has a unique Nash equilibrium (D, D), but each player’s payoff in this
equilibrium, which is 1, is greater than v i (G ), which is 0. For T ≥ 2, the T -period
repeated game of G has a Nash equilibrium for which the outcome is not a con-
stant repetition of the Nash equilibrium of G . In one such equilibrium, each
player’s strategy selects C after any history up to period T − 1, with two excep-
tions: (i) after the history in which the outcome is (C ,C ) in periods 1, . . . , T −1 it
selects D , and (ii) after any history in which the other player chose D in some pe-
riod before T , it selects E . The outcome of this strategy pair is (C ,C ) in periods 1
through T −1 and (D, D) in period T . The strategy pair is a Nash equilibrium: de-
viating in the last period is not profitable; deviating in an earlier period increases
a player’s payoff by 1 in that period, but induces the other player to choose E
in every subsequent period, reducing the player’s payoff by at least 1 in each of
those periods.

More generally, let G be a strategic game with a unique Nash equilibrium a ∗
for which u i (a ∗) > v i (G ) for each player i . Let a be an action profile in G for
which u i (a )> u i (a ∗) for each player i . Then for some number K and any num-
ber T > K , the T -period repeated game of G has a Nash equilibrium in which
the outcome has two phases: each player i chooses a i through period T −K and
then a i

∗. If a single player, say j , deviates in the first phase, every other player i
subsequently chooses the action p i (j ), where p (j ) is a solution of (16.1) (that is,
a list of actions of the players other than j that hold j ’s payoff down to at most
v j (G )). If player j deviates from a in the first phase, she subsequently obtains a
payoff of at most v j (G ) in each subsequent period, so that if K is large enough
her gain is offset by her loss of at least u j (a ∗)−v j (G ) in each of at least K periods.

16.5.2 Infinitely repeated games with limit of the means payoffs

We now study a game in which a strategic game is played in each of an infinite
sequence of periods, 1, 2, 3, . . . . As for a finitely repeated game, each player is
fully informed in each period of the sequence of action profiles chosen in the
previous periods. There are several ways of specifying the players’ payoffs in the
infinitely-repeated game. We focus on a criterion called the limit of the means:
each player assesses a sequence of payoffs by the limit, as T →∞, of the mean of
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these payoffs in the first T periods. Thus, for example, the payoff in the repeated
game for the sequence of payoffs 0,0,0, . . . ,0,1,3,1,3, . . . in which 0 occurs a finite
number of times and subsequently the payoff alternates between 1 and 3 is 2.

Definition 16.15: Infinitely repeated game with limit of means payoffs

Let G = 〈N ,{Ai }i∈N ,{u i }i∈N 〉 be a strategic game. The infinitely repeated
game of G is the tuple 〈G , H , P, (¼i )i∈N 〉where

Histories
H consists of ∅ (the initial history) and all finite and infinite sequences
of members of A = ×i∈N Ai (the infinite sequences are the terminal
histories)

Player function
P is a function that assigns to each nonterminal history (that is, any
finite sequence of members of A) the set N (all players move after every
nonterminal history)

Preferences
for each i ∈N ,¼i is a preference relation over infinite sequences (a t )∞t=1

of members of A (player i ’s preferences over the set of terminal histo-
ries) that is represented by the function limT→∞

∑T
t=1 u i (a t )/T .

This definition glosses over one issue: the limit of the means is not well
defined for every sequence of numbers (even for sequences in which all the
numbers are 0 or 1). However, the definition suffices for our purposes because
we restrict attention to strategy profiles that yield streams of outcomes of the
type (b1, . . . ,b K , c1, . . . , c L , c1, . . . , c L , . . . ), in which there is an initial block of finite
length (which is possibly empty) followed by a perpetual repetition of a sequence
(c1, . . . , cL). The limit of the means payoff for player i for such a sequence is the
average of i ’s payoff in (c1, . . . , c L), namely

∑L
t=1 u i (ct )/L. If you are especially in-

terested in repeated games, we suggest Osborne and Rubinstein (1994, Chapter
8) for a detailed description of strategies that are executed by finite automata. A
profile of such strategies induces such an outcome in a repeated game.

If the payoff of any player j in the repeated game is less than v j (G ) (see (16.1))
then she can deviate to a strategy that guarantees her at least v i (G ) in every pe-
riod, so that in every Nash equilibrium of the repeated game her payoff is at least
v j (G ).

The next result shows that the unending repetition of any finite sequence
of outcomes that yields every player i an average payoff greater than v i (G ) is
the outcome of some subgame perfect equilibrium of the repeated game. In
particular, the infinite repetition of the Prisoner’s dilemma
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C D
C 3,3 0,4
D 4,0 1,1

has subgame perfect equilibria in which the payoff profiles are, for example, (3,3)
((C ,C ) in every period), (2,2) (alternating between (C , D) and (D,C )), and ( 11

4
, 7

4
)

(cycling through (C ,C ), (C ,C ), (D,C ), (D, D)).

Proposition 16.10: SPE of infinitely repeated game with limit of means
payoffs

Let G be a strategic game and let c1, . . . , c L be outcomes of G with w i =∑L
t=1 u i (ct )/L > v i (G ) for all i ∈N , where v i (G ) is given in (16.1). Then the

infinitely repeated game of G has a subgame perfect equilibrium for which
the outcome is an unending repetition of (c1, . . . , c L).

Proof

Recall that v i (G ) = mina−i maxa i u i (a i , a−i ) and p (i ) is a combination of
actions for the players other than i that guarantees that i ’s payoff in G is
no more than v i (G ).

To construct a subgame perfect equilibrium of the infinitely repeated
game, think of the players as being in one of n + 1 phases. In the phase
Regular, the players choose their actions so that the outcome consists of
repetitions of the sequence (c1, . . . , cL). At the end of every L periods in this
phase, the players conduct a review. If no player or more than one player
has deviated, they stay in the phase and start the sequence again. If ex-
actly one player i has deviated, the players move to a phase Pi in which
all of them other than i punish player i by choosing p (i ) for T i periods,
where T i is large enough that player i ’s average payoff over the L+T i pe-
riods is less than w i . This is possible because w i > v i (G ) and whatever
player i does when she is punished she cannot obtain a payoff higher than
v i (G ). At the end of the T i periods all players move back to the Regular
phase.

To see that this profile of strategies is a subgame perfect equilibrium,
consider any history h. For this profile of strategies, the average payoff
of each player’ i following h is exactly w i (the players return to the Reg-
ular phase if they leave it). Whatever alternative strategy a player i uses,
her stream of payoffs is a sequence consisting of blocks each with an av-
erage payoff of at most w i . Thus, the limit of her average payoffs does not
exceed w i .
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Problems

1. Trust game. Player 1 starts with $10. She has to decide how much to keep and
how much to transfer to player 2. Player 2 triples the amount of money she
gets from player 1 and then decides how much, from that total amount, to
transfer to player 1. Assume that each player is interested only in the amount
of money she has at the end of the process.

Model the situation as an extensive game and find its subgame perfect equi-
libria.

Does the game have a Nash equilibrium outcome that is not a subgame per-
fect equilibrium outcome?

What are the subgame perfect equilibria of the game in which the process is
repeated three times?

2. Multiple subgame perfect equilibria. Construct an extensive game with two
players that has two subgame perfect equilibria, one better for both players
than the other.

3. Nash equilibrium and subgame perfect equilibrium. Construct an extensive
game with two players that has a unique subgame perfect equilibrium and
a Nash equilibrium that both players prefer to the subgame perfect equilib-
rium.

4. Comparative statics. Construct two extensive games that differ only in the
payoff of one player, say player 1, regarding one outcome, such that each
game has a unique subgame perfect equilibrium and the subgame perfect
equilibrium payoff of player 1 is lower in the game in which her payoff is
higher.

5. Auction. Two potential buyers compete for an indivisible item worth $12.
Buyer 1 has $9 and buyer 2 has $6. The seller will not accept any offer less
than $3.

The buyers take turns bidding, starting with buyer 1. All bids are whole dol-
lars and cannot exceed $12. A player can bid more than the amount of cash
she holds, but if she wins she is punished severely, an outcome worse for her
than any other. When one of the bidders does not raise the bid, the auction
is over and the other player gets the item for the amount of her last bid.

a. Show that in all subgame perfect equilibria of the extensive game that
models this situation player 1 gets the item.
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b. Show that the game has a subgame perfect equilibrium in which the item
is sold for $3.

c. Show that the game has a subgame perfect equilibrium in which the item
is sold for $8.

6. Solomon’s mechanism. An object belongs to one of two people, each of whom
claims ownership. The value of the object is H to the owner and L to the other
individual, where H > L > 0. King Solomon orders the two people to play the
following game. Randomly, the people are assigned to be player 1 and player
2. Player 1 starts and has to declare either mine or hers. If she says hers, the
game is over and player 2 gets the object. If she says mine, player 2 has to say
either hers, in which case the object is given to player 1, or mine, in which
case player 2 gets the object and pays M to King Solomon, with H >M > L,
and player 1 pays a small amount ε > 0 to King Solomon.

Explain why the outcome of this procedure is that the owner gets the object
without paying anything.

7. Communication. Consider a group of n people, with n ≥ 3, living in sepa-
rate locations, who need to share information that is received initially only
by player 1. Assume that the information is beneficial only if all the players
receive it. (The group may be a number of related families, the information
may be instructions on how to get to a family gathering, and the gathering
may be a success only if everyone attends.) When a player receives the in-
formation, she is informed of the path the information took. She then de-
cides whether to pass the information to one of the players who has not yet
received it. If every player receives the information, then every player who
passed it on receives a payoff of 1− c , where c ∈ (0,1), and the single player
who got it last receives a payoff of 1. Otherwise, every player receives a payoff
of −c if she passed on the information and 0 otherwise.

a. Draw the game tree for the case of n = 3.

b. Characterize the subgame perfect equilibria of the game for each value
of n .

8. Race. Two players, 1 and 2, start at distances A and B steps from a target. The
player who reaches the target first gets a prize of P (and the other player gets
no prize). The players alternate turns, starting with player 1. On her turn, a
player can stay where she is, at a cost of 0, advance one step, at a cost of 2,
or advance two steps, at a cost of 4.5. If for two successive turns both players
stay where they are then the game ends (and neither player receives a prize).
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Each player aims to maximize her net gain (prize, if any, minus cost). For
any values of A, B , and P with 6 ≤ P ≤ 8, find the unique subgame perfect
equilibrium of the extensive game that models this situation.

9. One-deviation property. Show that a strategy pair that satisfies the one-
deviation property is not necessarily a subgame perfect equilibrium of a
game that does not have a finite horizon by contemplating the one-player
game illustrated below. In each period 1, 2, . . . the player can stop or con-
tinue. If in any period she chooses stop then the game ends and her payoff
is 0, whereas if she chooses continue she has another opportunity to stop. If
she never chooses stop then her payoff is 1.

C1

S

0

C1

S

0

C1

S

0

C1

S

0

1

10. Implementation. You are a mediator in a case in which two neighbors can-
not agree how to split the $100 cost of hiring a gardener for their common
property. Denote by v i the value of hiring the gardener for neighbor i . Each
neighbor knows both v 1 and v 2.

Your aim is to ensure that the gardener is hired if the sum of the neighbors’
values is greater than $100 and is not hired if the sum is less than $100.

You suggest that the neighbors participate in the following procedure. First
neighbor 1 names an amount. Neighbor 2 observes this amount and names
an amount herself. (Each amount can be any nonnegative number.) If the
sum of the amounts is less than $100, the gardener is not hired. If the sum
exceeds $100, the gardener is hired and each neighbor pays the gardener the
amount she named.

a. Show that for any values of v 1 and v 2, the outcome of the subgame per-
fect equilibrium of the game that models this procedure is that the gar-
dener is hired if v 1+ v 2 > 100 and is not hired if v 1+ v 2 < 100.

b. Suppose that the neighbors are asked to report amounts simultaneously
and the gardener is hired if and only if the sum of the reports is at least
100. Show that if 100 < v 1 + v 2 < 200 and v i ≤ 100 for i = 1, 2 then
the strategic game that models the procedure has a Nash equilibrium in
which the gardener is not hired.
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Bargaining

11. Alternating offers with fixed bargaining costs. Analyze the variant of the
infinite-horizon bargaining game with alternating offers and discounting in
which each player i values an amount x received in period t by x−c i t (rather
than (δi )t x ). (That is, she bears a fixed cost of c i for each period that passes
before agreement is reached.) Assume that 0 < c 1 < c 2. Show that the game
has a unique subgame perfect equilibrium and in this equilibrium player 1
gets the entire pie.

12. Alternating offers with equal fixed costs. Consider the variant of the game in
Problem 11 in which c 1 = c 2 = c .

a. Show that each partition in which player 1 gets at least c is an outcome
of a subgame perfect equilibrium.

b. Show that if c ≤ 1
3

then the game has a subgame perfect equilibrium in
which agreement is not reached in period 1.

13. Alternating offers with a discrete set of agreements.

Two indivisible items, each valued at $1, are to be split between two bar-
gainers if they agree how to share them. Assume that they use the infinite-
horizon alternating offers procedure to reach agreement and that they have
the same discount factor δ, with 1

2
<δ< 1.

a. Show that for any positive integer K , the game has a subgame perfect
equilibrium in which the players reach agreement only in period K .

b. Is it possible that in a subgame perfect equilibrium the players never
reach agreement?

c. What are the subgame perfect equilibria if 0 <δ< 1
2

?

Repeated games

14. Infinitely repeated game with the overtaking criterion. Recall that the limit
of the means criterion is not sensitive to the payoffs in a finite number of
periods. The overtaking criterion is more sensitive. We say that an individ-
ual prefers the sequence of payoffs (xt ) to the sequence (yt ) if there exists
ε > 0 such that eventually (for all T larger than some T ∗) we have

∑T
t=1 xt −∑T

t=1 yt > ε.

a. Compare the following sequences by the limit of the means and over-
taking criteria: a = (4,1,3,1,3, . . . ), b = (3,1,3,1, . . . ), c = (2,2, . . . ), and
d = (10,−10, 10,−10, . . . ).
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b. Consider the following game G .

C D
C 6,6 1,0
D 7,4 2,0

Why is the strategy pair described in the proof of Proposition 16.10 with
the outcome (C ,C ) in every period not a subgame perfect equilibrium of
the infinitely repeated game with the overtaking criterion?

c. Suggest a subgame perfect equilibrium of the repeated game of G with
the overtaking criterion for which the outcome is (C ,C ) in every period.

15. Infinitely repeated game of exchange of favors. Consider the following variant
G of Bach or Stravinsky in which player 1 prefers to coordinate on B , player 2
prefers to coordinate on S, and if they do not coordinate then each player
prefers to choose her favorite action.

B S
B 7,2 4,4
S 0,0 2,7

Consider the infinitely repeated game of G (with limit of the means payoffs).

a. Construct a subgame perfect equilibrium of the repeated game in which
the outcome alternates between (B , B ) and (S,S).

b. The players consider a partition of the week into days on which the play-
ers choose the action pair (B , B ) and days on which they choose the ac-
tion pair (S,S). Which combinations of the seven days can be an outcome
of a subgame perfect equilibrium of the repeated game?

Notes

The notion of an extensive game originated with von Neumann and Morgenstern
(1944); Kuhn (1950, 1953) suggested the model we describe. The notion of sub-
game perfect equilibrium is due to Selten (1965). Proposition 16.3 is due to Kuhn
(1953).

The centipede game (Example 16.2) is due to Rosenthal (1981). Proposi-
tion 16.8 is due to Rubinstein (1982).

The idea that cooperative outcomes may be sustained in equilibria of re-
peated games is due to Nash (see Flood 1958/59, note 11 on page 16) and was
elaborated by Luce and Raiffa (1957) (pages 97–105 and Appendix 8) and Shubik
(1959) (Chapter 10, especially page 226). The result on finitely repeated games
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discussed at the end of Section 16.5.1 is due to Benoît and Krishna (1987). Propo-
sition 16.10 was established by Robert J. Aumann and Lloyd S. Shapley and by
Ariel Rubinstein in the mid 1970’s; see Aumann and Shapley (1994) and Rubin-
stein (1977).

The game in Problem 6 is taken from Glazer and Ma (1989). The game in
Problem 8 is a simplification due to Vijay Krishna of the model in Harris and
Vickers (1985). Repeated games with the overtaking criterion (Problem 14) are
studied by Rubinstein (1979).


