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18 Matching

Consider the following problem. Some individuals in a society are X ’s and others
are Y ’s. Every individual of each type has to be matched with one and only one
individual of the other type. For example, managers have to be matched with
assistants, or pilots have to be matched with copilots. Each X has preferences
over the Y ’s and each Y has preferences over the X ’s. Every individual prefers
to be matched than to remain unmatched. We look for matching methods that
result in sensible outcomes given any preferences.

18.1 The matching problem

We denote the set of X ’s by X and the set of Y ’s by Y and assume that they have
the same number of members. Each x ∈ X has a preference relation over the set
Y and each y ∈ Y has a preference relation over the set X . We assume that all
preferences are strict (no individual is indifferent between any two options).

Definition 18.1: Society and preference profile

A society (X , Y ) consists of finite sets X and Y (of individuals) with the same
number of members. A preference profile (¼i )i∈X∪Y for the society (X , Y )
consists of a strict preference relation ¼i over Y for each i ∈ X and a strict
preference relation ¼i over X for each i ∈ Y .

A matching describes the pairs that are formed. Its definition captures the
assumption that each individual has to be matched with exactly one individual
of the other type.

Definition 18.2: Matching

A matching for a society (X , Y ) is a one-to-one function from X to Y . For a
matching µ and x ∈ X we refer to (x ,µ(x )) as a match.

We discuss matching methods, which map preference profiles into match-
ings. That is, a matching method specifies, for each preference profile, who is
matched with whom.
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306 Chapter 18. Matching

Definition 18.3: Matching method

A matching method for a society is a function that assigns a matching to
each preference profile for the society.

The following example treats one side (the Y ’s), like the houses in the models
of Chapter 8, and takes into account only the preferences of the X ’s.

Example 18.1: Serial dictatorship

The X ’s, in a pre-determined order, choose Y ’s, as in the serial dictatorship
procedure. Each X chooses from the Y ’s who were not chosen by previ-
ous X ’s. This procedure always results in a matching, and thus defines a
matching method.

Here are two more examples of matching methods.

Example 18.2: Minimizing aggregate rank

For any pair (x , y ) consisting of an X and a Y , let n x (y ) be y ’s rank in x ’s
preferences and let n y (x ) be x ’s rank in y ’s preferences. Attach to each pair
(x , y ) a number I (x , y ) = α(n x (y ), n y (x )), where α is a function increas-
ing in both its arguments (for example α(n 1, n 2) = n 1 + n 2). The number
α(n x (y ), n y (x )) is a measure of the dissatisfaction of individuals x and y
with their match. The matching method chooses the matching that mini-
mizes the sum of I (x , y ) over all pairs (x , y ) (or one such matching if more
than one exists).

Example 18.3: Iterative selection of the best match

Start by choosing a pair for which the value of I (x , y ) defined in Exam-
ple 18.2 is minimal over all pairs (x , y ). Remove the members of the cho-
sen pair from X and Y and choose a pair for which the value of I (x , y ) is
minimal over the smaller sets. Continue iteratively in the same way.

18.2 Gale-Shapley algorithm

We now consider a matching method that has an interesting description and
some attractive properties. The algorithm that defines it has two versions, one
in which the X ’s initiate matches, and one in which the Y ’s do so. We describe
the former.
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Stage 1

1
2
3
4

1
2
3
4

(a) Each X chooses
her favorite Y .

1
2
3
4

1
2
3
4

(b) Each Y chosen
by more than one
X chooses her
favorite X among
those who chose
her.

1
2
3
4

1
2
3
4

(c) X ’s chosen by
Y ’s are tentatively
matched with
them; remaining
individuals are
unmatched.

Stage 2

1
2
3
4

1
2
3
4

(d) Unmatched X ’s
choose their
favorite Y ’s among
the Y ’s who haven’t
rejected them.

Figure 18.1 An example of the first stages of the Gale-Shapley matching method. The
X ’s are indicated by a green background and theY ’s by an orange background.

The algorithm proceeds in a series of stages. At the end of each stage, some
pairs are tentatively matched; at the end of the procedure, the existing tentative
matches become final.

Stage 1
Each X chooses her favorite Y . If every Y is chosen by exactly one X then the
algorithm ends with that matching. If some Y is chosen by more than one X ,
then every such Y chooses her favorite X from among those who chose her
and is tentatively matched with this X . She rejects the other X ’s who chose
her. All X ’s who were not chosen by a Y are left unmatched. (See Figure 18.1
for an illustration of the start of the algorithm in the case that 1 is the favorite
of 1 and 2 and 4 is the second best of 1; 4 is the favorite of 3 and 4 and 2 is the
second best of 3; and 1 prefers 2 to 1 and 4 prefers 4 to 3.)

Stage t +1 for t ≥ 1
At the start of stage t + 1, tentative matches exist from stage t , and some in-
dividuals are unmatched. Each unmatched X chooses her favorite Y among
those who have not rejected her in the past. Some of the Y ’s thus chosen may
already be tentatively matched with X ’s. (In the example in Figure 18.1, that
is the case in Stage 2 for 4.) Each Y chooses her favorite X from the set con-
sisting of the X with whom she was tentatively matched at the end of stage t
and the unmatched X ’s who chose her, resulting in new tentative matches.

Stopping rule
The process ends when every X is tentatively matched with a Y , in which case
the tentative matches become final.

The following definition specifies the algorithm formally, but if you find the
previous description clear you may not need to refer to it.
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Procedure: Gale-Shapley algorithm

Given a society (X , Y ), the Gale-Shapley algorithm for (X , Y ) in which X ’s
initiate matches, denoted GSX , has as input a preference profile (¼i )i∈X∪Y

for (X , Y ) and generates a sequence (g t , Rt )t=0,1,... where

• g t : X → Y ∪ {unmatched} is a function such that no two X ’s are
mapped to the same Y

• Rt is a function from X to subsets of Y .

A pair (g t , Rt ) is the state of the algorithm at the end of stage t . If g t (x )∈ Y
then g t (x ) is the Y with whom x is tentatively matched and Rt (x ) is the set
of all Y ’s who rejected x through stage t .

Definition of (g 0, R0)
Every X is unmatched and every set R0(x ) is empty:

g 0(x ) = unmatched for all x ∈ X

R0(x ) =∅ for all x ∈ X .

Definition of (g t+1, Rt+1) given (g t , Rt )
For each y ∈ Y let

At+1(y ) = {x ∈ X : y is best in Y \Rt (x ) according to ¼x }.

That is, At+1(y ) is the set of the X ’s who choose y in stage t + 1. (Note
that if g t (x ) = y then x ∈ At+1(y ).)

Now

g t+1(x ) =

(
y if x is best in At+1(y ) according to ¼y

unmatched otherwise

and

Rt+1(x ) =

(
Rt (x ) if g t+1(x )∈ Y

Rt (x )∪{y ∈ Y : x ∈ At+1(y )} if g t+1(x ) = unmatched.

Thus Rt+1(x ) is equal to Rt (x ) unless x is rejected at stage t by some
y ∈ Y , in which case that y (and only her) is added to Rt (x ).

Stopping rule
The process ends at stage T if g T (x )∈ Y for all x ∈ X .
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The description of the algorithm talks of individuals choosing matches. But
that language should not be taken literally. We use it simply to describe the algo-
rithm attractively (as we did for serial dictatorship). The Gale-Shapley algorithm
simply defines a function that attaches a matching to every preference profile.
Soon we prove that the algorithm indeed always ends with a matching, but first
we give an example.

Example 18.4

Consider the society with four X ’s and four Y ’s and the following prefer-
ence profiles, where X ’s are shown in green and Y ’s in orange.

1: 1� 4� 2� 3
2: 2� 3� 1� 4
3: 4� 2� 3� 1
4: 4� 3� 1� 2

1: 3� 1� 2� 4
2: 3� 2� 4� 1
3: 4� 3� 2� 1
4: 1� 4� 3� 2

X ’s initiate matches We first apply GSX (where X ’s initiate matches) to this
preference profile.

Stage 1: 1 chooses 1, 2 chooses 2, and both 3 and 4 choose 4. 4 prefers
4 to 3 and thus rejects 3 and keeps 4. That is, g 1(1) = 1, g 1(2) = 2,
g 1(3) = unmatched, and g 1(4) = 4, and R1(1) = ∅, R1(2) = ∅, R1(3) = {4},
and R1(4) =∅.

1
2
3
4

1
2
3
4

Stage 2: 3 chooses 2, who is tentatively matched with 2. 2 prefers 3 to
2 and so rejects 2. That is, g 2(1) = 1, g 2(2) = unmatched, g 2(3) = 2, and
g 2(4) = 4, and R2(1) =∅, R2(2) = {2}, R2(3) = {4}, and R2(4) =∅.

1
2
3
4

1
2
3
4

Stage 3: 2 chooses 3. Every Y is now matched with a unique X , and the
process ends. We have g 3(1) = 1, g 3(2) = 3, g 3(3) = 2 and g 4(4) = 4.

1
2
3
4

1
2
3
4
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Y ’s initiate matches Now we apply GSY to the profile.
Stage 1: 1 and 2 choose 3, 3 chooses 4, and 4 chooses 1. 3 prefers 2 to 1

and so rejects 1.

1
2
3
4

1
2
3
4

Stage 2: 1 chooses 1, who prefers 1 to 4 and so rejects 4.

1
2
3
4

1
2
3
4

Stage 3: 4 chooses 4, who prefers 4 to 3 and so rejects 3.

1
2
3
4

1
2
3
4

Stage 4: 3 chooses 3, who prefers 2 to 3 and so rejects 3.

1
2
3
4

1
2
3
4

Stage 5: 3 chooses 2. Every X is now matched with a unique Y , and the
process ends.

1
2
3
4

1
2
3
4

Note that the matchings in these two examples are the same. But don’t jump
to conclusions: for many preference profiles the matchings generated by GSX

and GSY differ.
We now show that for every profile of preferences the algorithm is well de-

fined and eventually terminates in a matching.

Proposition 18.1: Gale-Shapley algorithm yields a matching

For any society and any preference profile for the society, the Gale-Shapley
algorithm is well defined and generates a matching.
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Proof

We consider the algorithm GSX , in which X ’s initiate matches. The argu-
ment for GSY is analogous.

We first show that the algorithm is always well defined. That is, we ar-
gue that for no preference profile does GSX have a stage t at which some
x ∈ X has been rejected by all Y ’s (that is, Rt (x ) = Y ). Note that when a
Y rejects an X , she remains tentatively matched with some other X . Thus
if some x ∈ X has been rejected after stage t by every Y , then every Y is
tentatively matched with an X . But the number of members of X is the
same as the number of members of Y , so it must be that x is tentatively
matched (that is g t (x ) ∈ Y ), and in particular has not been rejected by
g t (x ), a contradiction.

We now show that the algorithm terminates. At each stage at which the
algorithm continues, at least one X is rejected. Thus if the algorithm did
not stop, we would reach a stage at which one of the X ’s would have been
rejected by every Y , which we have shown is not possible.

Finally, the algorithm terminates when no X is unmatched, so that the
outcome is a matching.

18.3 Gale-Shapley algorithm and stability

We now consider properties of the matching generated by the Gale-Shapley al-
gorithm. We classify a matching as unstable if there are two individuals who
prefer to be matched with each other than with the individuals with whom they
are matched. That is, matching µ is unstable if for some x ∈ X and y ∈ Y with
y 6= µ(x ), x prefers y to µ(x ) (the Y with whom x is matched) and y prefers x to
µ−1(y ) (the X with whom y is matched). In this case both x and y want to break
the matches assigned by µ and match with each other. A matching is stable if no
such pair exists.

Definition 18.4: Stable matching

For a society (X , Y ) and preference profile (¼i )i∈X∪Y , a matching µ is stable
if there is no pair (x , y )∈ X ×Y such that y �x µ(x ) and x �y µ−1(y ).

To illustrate the concept of stable matching we give an example showing that
the serial dictatorship algorithm, in which the members of X sequentially choose
members of Y from those who were not chosen previously, may generate an
unstable match.
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Example 18.5

Consider a society ({1,2,3},{1,2,3})with the following preferences.

1: 1� 2� 3
2: 1� 2� 3
3: 1� 2� 3

1: 2� 3� 1
2: 3� 2� 1
3: 1� 3� 2

Apply the serial dictatorship algorithm in which the X ’s choose Y ’s in the
order 1, 2, 3. The algorithm yields the matching in which each i ∈ X is
matched to i ∈ Y . This matching is unstable because 2 ∈ X and 1 ∈ Y both
prefer each other to the individual with whom they are matched.

We now show that the Gale-Shapley algorithm generates a stable matching.

Proposition 18.2: Gale-Shapley algorithm yields a stable matching

For any society and any preference profile for the society, the Gale-Shapley
algorithm generates a stable matching.

Proof

Consider a society (X , Y ) and preference profile (¼i )i∈X∪Y . Denote by µ
the matching generated by the algorithm GSX . Assume that for x ∈ X and
y ∈ Y , individual x prefers y to µ(x ) (y �x µ(x )). Then at some stage be-
fore x chose µ(x ), she must have chosen y and have been rejected by her
in favor of another X . Subsequently, y rejects an X only in favor of a pre-
ferred X . Thus it follows that y prefers µ−1(y ), the X with whom she is
eventually matched, to x . We conclude that no pair prefers each other to
the individual with whom she is assigned by µ, so that µ is stable.

Many matchings may be stable. The GSX algorithm finds one stable matching
and GSY finds another, possibly the same and possibly not. Is it better to be on
the side that initiates matches? Is any stable matching better for one of the X ’s
than the matching generated by GSX ? The next result answers these questions:
for each x ∈ X the matching generated by GSX is at least as good for x as any other
stable matching, and in particular is at least as good as the matching generated
by GSY .

Proposition 18.3: GSX algorithm yields best stable matching for X ’s

For any society and any preference profile for the society, no stable match-
ing is better for any X than the matching generated by the GSX algorithm.
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Proof

Let µ be the (stable) matching generated by GSX for the society (X , Y ) and
preference profile (¼i )i∈X∪Y . Suppose that ψ is another stable matching
and ψ(x ) �x µ(x ) for some x ∈ X . Let X ∗ be the set of all x ∈ X for whom
ψ(x )�x µ(x ). For each x ∈ X ∗ denote by t (x ) the stage in the GSX algorithm
at which x choosesψ(x ) and is rejected by her. Let x0 ∈ X ∗ for whom t (x0)
is minimal among the x ∈ X ∗. Let y0 =ψ(x0) and let x1 ∈ X be the individual
y0 chose when she rejected x0 in the GSX algorithm. That is, at stage t (x0)
individuals x0 and x1 choose y0, who rejects x0 in favor of x1 (x1 �y0 x0). Let
ψ(x1) = y1.

x0

x1

y0 =ψ(x0)
y1 =ψ(x1)

t (x0)

If y0 �x1 y1 then each member of the pair (x1, y0) prefers the other mem-
ber to the individual assigned her by ψ, contradicting the stability of ψ.
Therefore y1 �x1 y0. But then in the GSX algorithm x1 must choose y1

and be rejected before stage t (x0), so that t (x1) < t (x0), contradicting the
minimality of t (x0).

We complement this result with the observation that for each Y no stable
matching is worse than the matching generated by the GSX algorithm.

Proposition 18.4: GSX algorithm yields worst stable matching for Y ’s

For any society and any preference profile for the society, no stable match-
ing is worse for any Y than the matching generated by the GSX algorithm.

Proof

Consider a society (X , Y ) and suppose that for the preference profile
(¼i )i∈X∪Y the algorithm GSX leads to the (stable) matching µ. Suppose an-
other stable matching ψ is worse for some y ∈ Y : x2 =ψ−1(y )≺y µ−1(y ) =
x1. Let y1 =ψ(x1).

µ ψ

y ↔ x1 y ↔ x2

y1↔ x1

By Proposition 18.3, y = µ(x1) �x1 ψ(x1) = y1. Given x1 �y ψ−1(y ) = x2,
x1 and y prefer each other to the individuals with whom they are matched
inψ, contrary to the assumption that ψ is stable.
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Problems

1. Stable matching and Pareto stability.

a. Show that any stable matching is Pareto stable. That is, for no preference
profile is another matching (stable or not) better for one individual and
not worse for every other.

b. Give an example of a Pareto stable matching that is not stable.

2. Pareto stability for the X ’s. Show that the outcome of the GSX algorithm is
weakly Pareto stable for the X ’s. That is, no other matching is better for
every X .

3. All X ’s have the same preferences. Assume that all X ’s have the same prefer-
ences over the Y ’s.

a. How many stages does the GSX algorithm take?

b. Which serial dictatorship procedure yields the same final matching as the
GSX procedure?

c. Show that in this case GSX and GSY lead to the same matching.

4. Matching with unequal groups. Group A has m members and group B has n
members, with m < n . Each individual has strict preferences over the mem-
bers of the other group. Let GSA be the Gale-Shapley algorithm in which the
A’s initiate the matches and let GSB be the algorithm in which the B ’s initiate
the matches.

a. Show that if m = 1 then GSA and GSB yield the same matching.

b. Explain why GSA and GSB do not necessarily yield the same matching if
m = 2.

c. Show that in both GSA and GSB every individual in A is matched with one
of her m most preferred members of B .

5. Clubs. Assume that 3n students have to be allocated to three programs, each
with capacity n . Each student has strict preferences over the set of programs
and each of the programs has strict preferences over the students. Describe
an algorithm similar to the Gale-Shapley algorithm, define a notion of sta-
bility, and show that for any preference profile your algorithm ends with a
stable matching.

6. Manipulation. The Gale-Shapley algorithm is not strategy-proof and thus
is not immune to manipulation. Specifically, if each individual is asked to
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report preferences and the GSX algorithm is run using the reported prefer-
ences, then for some preference profiles some individual is better off, ac-
cording to her true preferences, if she reports preferences different from her
true preferences.

To see this possibility, consider the following preference profile for a society
with three X ’s and three Y ’s.

1: 1� 2� 3
2: 2� 1� 3
3: 1� 2� 3

1: 2� 1� 3
2: 1� 2� 3
3: 1� 2� 3

Show that 1 can benefit by reporting preferences different from her true
preferences.

7. The roommate problem. A society contains 2n individuals. The individuals
have to be partitioned into pairs. Each individual has a (strict) preference
over the other individuals. An assignment µ is a one-to-one function from
the set of individuals to itself such that if µ(i ) = j then µ(j ) = i . An assign-
ment is stable if for no pair of individuals does each individual prefer the
other member of the pair to her assigned partner. Construct an example of a
preference profile (with four individuals) for which no assignment is stable.

Notes

The chapter is based on Gale and Shapley (1962).




