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4. Formalism, structuralism, and 
the doctrine of neutrality

 Ole Skovsmose

The doctrine of  neutrality states that mathematics can be researched and 
developed without considering any ethical or socio-political issues. This doctrine 
became elaborated and argued in detail by the school of  logical positivism. 
By the turn of the nineteenth century, a range of paradoxes and inexplicable 
mathematical phenomena appeared, a situation referred to as the foundational 
crisis of mathematics. To many, intuition was the scoundrel, and it had to be 
eliminated from mathematics.  Formalism provided a principal approach by 
identifying mathematics with formal structures. This idea was embraced by 
logical positivists who claimed that mathematics as the language of science 
ensures the ethical  neutrality of science. They considered mathematics not only 
as being neutral itself, but also as a guarantee for scientific  neutrality in general. 
In this way, a most profound stipulation of the doctrine of  neutrality was reached. 
Formalism developed into  structuralism, which described mathematics as an 
architecture of pure formal structures. As part of the  structuralist conception of 
mathematics, the doctrine of  neutrality was expanded from being a conception of 
mathematical research to become also a doctrine shaping educational practices in 
mathematics. I am going to confront this conception. The doctrine of  neutrality 
is a stipulation, which makes us ignore that a profound politicisation of both 
mathematics and mathematics education might be taking place.

Introduction

On the 22 June 1936, Moritz  Schlick was murdered on the broad steps of 
the main entrance of the University of Vienna. He was shot from close 
range by a former student, Johann  Nelböck.  Schlick died immediately.
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In 1922,  Schlick had been nominated as professor in Naturphilosophie 
(philosophy of nature) at the university, and  Nelböck had studied there 
with  Schlick as his advisor. In 1931,  Nelböck graduated as a doctor 
in philosophy. During the trial, he gave different explanations for the 
killing, one referring to jealousy. He also claimed that  Schlick’s anti-
metaphysical philosophy had troubled him.  Nelböck was sentenced to 
ten years in jail.

The event became a controversial issue with much public attention. 
Although  Schlick was a German Protestant, he became portrayed in the 
press as a key figure in suspicious academic Jewish circles, and  Nelböck 
became celebrated by  Nazi movements. In 1938, after the Anschluss, the 
German annexation of Austrian,  Nelböck was released.

Soon after his nomination,  Schlick organised a discussion group 
that later became known as the  Vienna Circle (Wiener Kreis). This 
circle formulated a view on science and mathematics that came to be 
known as  logical positivism. The circle was deeply engaged in recent 
developments in science, mathematics, and logic. They were conversant 
with developments in  physics. They studied carefully the monumental 
work  Principia Mathematica by Alfred  Whitehead and Bertrand 
 Russell, published in three volumes in 1910–1913. The  Tractatus Logico-
Philosophicus by Ludwig  Wittgenstein, published in 1922, was also 
studied with extreme intensity.

The circle was also deeply engaged in the recent political developments 
in Austria and Germany. They launched a strong attack on any form of 
metaphysical thinking, including  Nazi ideologies. No doubt,  Schlick’s 
anti-metaphysical philosophy troubled not only  Nelböck, but many 
from the  Nazi movement.

The anti-metaphysical philosophy initiated by the  Vienna Circle 
ended up providing a broad platform for claiming that science and 
mathematics can be kept separated from socio-political and ethical 
issues, that they are  neutral subjects. In the previous Chapter 3, we 
saw how  Hardy’s thesis of mathematics being innocent turned into a 
dogmatic claim of mathematics being neutral. In this chapter, we are 
investigating a much broader philosophical trend, which establishes a 
formidable manifestation of this dogmatism.1

1  This dogmatism was confronted by a critical conception of mathematics that I 
return to in Chapter 11 in this book.
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As an initial step into this dogmatism, I refer to the elimination of 
intuition from mathematics, which represents a de-contextualisation 
of mathematical notions and reasonings. I refer to  formalism, which 
emerges as the result of this elimination of intuition, and which identifies 
mathematics with formal structures. Then I provide an exposition of 
 logical positivism that embraces  formalism and claims that not only 
mathematics but science in general is neutral and detached from any 
socio-political stance. After that, I present  structuralism, which represents 
a particularly elaborated version of  formalism also embracing the 
dogma of  neutrality. I show how the  Modern Mathematics Movement 
emerged as an educational version of  structuralism and manifests the 
de-policisation of mathematics education. As a kind of epilogue, I make 
a few  comments about ‘Poor  Piaget!’.

Elimination of intuition

The elimination of intuition from mathematics includes three 
components: making explicit hidden axioms and assumptions that in fact 
are used in developing a mathematical theory; eliminating ontological 
issues referring to assumptions about the nature of mathematical 
objects; and identifying and formalising the logical patterns of deduction 
and reasoning used in mathematics.

Since  Antiquity,  Euclid’s  Elements has been taken as the paradigmatic 
case of mathematical deduction.2 A deduction must start out from 
something, and this ‘something’ was presented by  Euclid in terms of 
five axioms (which by  Euclid were referred to as postulates). From these 
axioms, logical deduction leads to a range of theorems. If the axioms 
were true, all theorems would be true as well, since logical deduction 
provides a delivery of truth. As  Euclid’s axioms appeared simple 
(although the fifth axiom seemed less so), their truth could be grasped 
immediately by intuition, and due to the strict deductive organisation 
of the Elements, all theorems could be considered true as well. So it was 
generally assumed.

This perception of the Elements only became challenged during the 
nineteenth century, where different studies revealed that more than the 

2  See Joyce (1998).



82 Breaking Images

five axioms were involved in the deduction of theorems.  Euclid had also 
applied intuition, for instance concerning space. This came as a shock: 
How could it be that this had been overlooked for more than 2000 
years? In 1882, Moritz  Pasch (1912) prepared the foundations for an 
extended axiomatics for  Euclidean  geometry. The process of making all 
applied axioms explicit was brought together in  Foundations of Geometry 
(Hilbert, 1950), the first German version of which appeared in 1899. 
While the  Elements includes five axioms, the  Foundations of Geometry 
builds on twenty-one axioms (later it was showed that one of them was 
redundant). Besides the five included in the Elements, one also finds, for 
example, the axiom:

Let A, B, C be three points not lying in the same line and let a be a line 
lying in the plane ABC and not passing through any of the points A, B, C. 
Then, if the line a passes through a point of the segment AB, it will also 
pass through either a point of the segment BC or a point of the segment 
AC. ( Hilbert, 1950, p. 4)

This axiom, first made explicit by  Pasch, was applied by  Euclid, but 
just as an intuitive insight. It was taken as a given that, when a straight 
line cuts one of the sides of a triangle, it will also cut one of the other 
sides (except from the situation where the line passes through a vertex 
of the triangle). The axiom states that when a straight line cuts into a 
triangle, it will not disappear in the interior of the triangle, but cut out 
of the triangle as well. There are no Bermuda triangles to be found in 
 Euclidean  geometry.

In order to eliminate intuition from mathematics, any deduction 
should be based on explicitly stated axioms. This was exactly what was 
prepared for by  Pasch and accomplished by David  Hilbert with respect 
to  Euclidean  geometry.

Ontological issues have been an ongoing challenge for the 
philosophy of mathematics: What is a number, a point, a line, or any 
other ‘mathematical object’ for that matter? In  Euclid’s  Elements, a point 
becomes defined as that which cannot be divided. This sounds clear 
enough, but it appears unclear what is the point of making this definition. 
It is not used later on in the deductive processes. Maybe the clarification 
of ontological issues is not crucial for mathematical proving. This point 
was clearly recognised by  Hilbert (1950), who initiates the presentation 
in Foundations of Geometry by stating:
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Let us consider three distinct systems of things. The things composing 
the first system, we will call points and designate them by the letters A, 
B, C […], those of the second, we will call straight lines and designate 
them by the letters a, b, c, […], and those of the third system, we will call 
planes and designate them by the Greek letters α, β, γ, […]. The points 
are called the elements of linear  geometry; the points and straight lines, the 
elements of plane  geometry; and the points, lines, and planes, the elements of 
the  geometry of space or the elements of space. (p. 2, italics in original)

 Hilbert’s point is that, for presenting  geometry in an axiomatic format, the 
very nature of its objects is irrelevant. They can be referred to as ‘things’. 
In the quotation, he refers to ‘points’, ‘lines’, and ‘planes’, but, as he in 
1891 had pointed out in a conversation with two other mathematicians 
at a train station, he could as well have referred to ‘tables’, ‘chairs’, and 
‘beer mugs’.3 Hilbert did highlight this point in 1891. For a geometric 
theory, the intrinsic qualities of points, lines, and planes are irrelevant; 
only their relationships are relevant. Such relationships, and nothing 
else, become specified through the axioms of  geometry. In this way, 
 Hilbert tried to eliminate intuition from ontological considerations, 
simply by considering ontology superfluous.

If an elimination of intuition from mathematics reasoning is to be 
properly carried out, one needs a firm grasp of what logical deduction 
could mean. This was the principal idea of Gottlob  Frege’s life project. 
He wanted to provide an enumeration of all valid forms of logical 
deduction. But how to do this? It would become a long list, and in what 
order should it be organised? Frege had a clear approach in mind; he 
wanted to organise all valid logical deductions in an axiomatic system, 
and in the  Begriffsschrift (Frege, 1967), the first German version of 
which was published in 1879, he presented how this could be done. His 
 Begriffsschrift provides a start of the formulation of modern formal logic.

Frege presents a set of logical axioms, seven in total, and two 
specific rules of inference, claiming that this defines a system that has 
as theorems precisely all valid forms of logical deduction. The system 
concerns propositional logic, but on top of this  Frege added predicate 
 calculus. Here, however, let me concentrate on its propositional basis.

Frege used a particular formal terminology, which did not become 
common. However, his presentation in the  Begriffsschrift has been 

3  See Shapiro (2000, p. 151), and Hilbert (1935, p. 403).
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carefully reworked in a symbolism that is now common in modern logic. 
A huge effort was made in  Principia Mathematica by Alfred  Whitehead 
and Bertrand  Russell (1910–1913). The axioms that  Whitehead and 
Russell used are a bit different from those suggested by  Frege, but the 
scope of the axiomatic systems are quite the same. For the propositional 
 calculus,  Whitehead and Russell operated with the following five 
axioms:

1. (p∨p)⇒p

2. q⇒(p∨q)

3. (p∨q)⇒(q∨p)

4. (p∨(q∨r))⇒(q∨(p∨r))

5. (q⇒r)⇒((p∨q)⇒(p∨r))

Russell and  Whitehead maintained the two rules of inference as 
formulated by  Frege. The first states that if A⇒B is a theorem or an axiom, 
and A is a theorem or an axiom, then B is a theorem. The second states that 
one can substitute a symbol with another. If, for instance, one has proved 
the formula p⇒(p∨p), then one can also conclude that q⇒(q∨q). No 
other rules of inference than these two were applied.

In summary, the elimination of intuition from mathematics was 
carried out by making hidden axioms explicit, by eliminating ontological 
issues from mathematical theorising, and by capturing mathematical 
reasoning by formal axiomatic systems. This triple-strategy for 
eliminating intuition created a new way of looking at mathematics. The 
triple strategy became defining for the  formalist outlook.

Formalism

Mathematics has been seen as a unique way of obtaining  certainty. When 
a mathematical  proof has been completed, we conclude that the proved 
theorem is true, and true with  certainty. While doubt and uncertainly 
accompany many forms of human knowledge, it can apparently be 
eliminated from the domain of mathematics. Mathematics seems a 
fortification against any possible invasions of scepticism. Therefore, it 
came as a shock when the fortification seemed to be collapsing.4

4  In my discussion of the foundational crisis of mathematics I draw on Ravn and 
Skovsmose (2019).
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By the turn of the nineteenth century, a range of paradoxes and 
inexplicable mathematical phenomena appeared, creating a situation 
referred to as the foundational crisis of mathematics. In 1901, one paradox 
was discovered by Bertrand  Russell; it was also identified by Ernst 
 Zermelo in 1899, but he communicated it only to a small circle of 
colleagues from Göttingen University, including  Hilbert. The paradox 
has the following form: Let M denote the set of sets that are not members 
of themselves, thus M = {x│x∉x}. Then let us ask: is M a member of 
itself? If the set M is a member of itself, it has the property M∉M. If M is 
not a member of itself, it has the property ¬(M∉M). In other words, we 
can conclude M∈M. Thus, we have M∈M if and only if M∉M.

Not only did such explicit paradoxes emerge, but also strange 
phenomena were observed. Georg  Cantor (1874) presented a new 
understanding of the notion of set, which until then had been taken as 
an uncomplicated intuitive notion. He showed that the infinity of real 
numbers is of a higher degree than the infinity of natural numbers. 
In fact, he revealed the existence of an infinity of degrees of infinities. 
Guiseppe  Peano (1890) discovered a curve, commonly referred to as the 
 Peano curve, which is a surjective and continuous function from the unit 
line the unit square. This curve, with the surprising property of being 
able of cover an area, has also been referred to as ‘the bald man’s hope’. 
If just one hair, long enough, is left, then the baldness can be properly 
covered.

How could it be that mathematics, which appeared so carefully 
elaborated through  proofs and theorems, could run into logical 
contradictions? What did the occurrence of new strange mathematical 
objects signify? Something seemed to have gone wrong. But how?

 Logicism,  formalism, and  intuitionism represent three main 
approaches for addressing the foundational crisis. To logicism  and 
 formalism, the scoundrel was intuition, and the elimination of intuition 
from mathematics forms part of these two approaches. Contrary to these 
positions,  intuitionism claims that intuition is crucial to mathematics, and 
that the paradoxes emergence when mathematics procedures become 
led astray by formalist procedures.5 In the following we concentrate on 
how  Hilbert addressed the crisis.

5  In Chapter 7 in this volume, I discuss more carefully the  intuitionist approach to 
mathematics.
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 Hilbert suggested a two-step metamathematical programme inviting 
a  formalist outlook on mathematics. First, mathematical theories had 
to be formalised. This could be done by squeezing every juicy drop 
of intuition out of mathematics. Then only formal structures would 
remain. Second, these formal  representations of mathematical theories 
had to be investigated, in particular with respect to completeness and 
consistency. If the completeness and consistency could be proved, then 
mathematical theories would be vaccinated against paradoxes.6

However, in 1931  Hilbert’s programme suffered a knock-out, when 
Kurt  Gödel (1962) published his famous incompleteness theorem. 
This theorem states that if a formal system of a certain complexity is 
consistent, it will be incomplete. The idea of representing mathematical 
theories by complete and simultaneously consistent formal systems 
was revealed as an illusion.  Gödel’s  proof presupposes that the formal 
system in question is rich enough to include an axiomatisation of 
standard  arithmetic, which was a minimal requirement for the whole 
metamathematical programme.7

The original idea of metamathematics was that mathematical theories 
could be represented by formal systems. Soon emerged the idea that 
mathematical theories could be identified with formal systems. This idea 
acquired much force, even after the metamathematical programme had 
stumbled over  Gödel’s incompleteness theorem. The claim of  identity 
between mathematics and formal structures is defining for  formalism as 
a philosophy of mathematics.  Hilbert has often been referred to as the 
father of  formalism, but I doubt if he thought of formal systems as being 
anything more than  representations of mathematical theories.

Formalism appears a powerful position, as it provides straightforward 
answers to such classic philosophical questions as: What is mathematics? 
The question simply becomes identical to the question: What is a formal 
system? This later question can be answered in specific steps by clarifying 
the notions of alphabet, formula, axiom, rule of inference,  proof, and theorem.

A formal system has to operate with an alphabet, which refers to the 
set of symbols that can be applied. Such an alphabet can include symbols 
such as p, q, r, (, ), ∨, ⇒, ∀, ∈, and ∃. For any specific formal system, the 

6  For a detailed presentation of metamathematics, see Kleene (1971).
7  For further discussions of  Gödel’s incompleteness theorem, see Budiansky (2021) 

and Goldstein (2005). 
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list of allowed symbols must be explicitly enumerated. It should be well-
defined whether or not a symbol belongs to the alphabet or not. It needs 
to be specified which sequences of symbols count as formulas in the 
system. One can think of this definition as the grammar of the formal 
system. A grammar could, for instance, define the sequence (p∨q) as 
being correct, and the sequence (⇒p∨q as being incorrect. The whole 
grammar has to be formulated in such a way that it is well-defined 
whether or not a sequence of symbols is a formula or not.

Some formulas have to be enumerated as axioms. This set will serve 
as a departure for the deductions to be made. Naturally, there are many 
issues related to the selection of axioms, as, for instance, not selecting 
axioms that might lead to contradictions. The rules of inference that are 
going to be applied in the system have to be enumerated. Such rules 
specify how one, from one or more formulas, can derive other formulas. 
The basic idea is that if the original formulas (the premises) are true, 
then the derived formulas (the conclusions) will be true as well. No 
formal system demonstrates the actual truth of any theorems, but it 
shows what can be considered true if the axioms are considered true. In 
a formal system, the notion of truth is of a hypothetical if-then nature.

A  proof can be defined as a sequence of the formulas F1, … ,Fn, where 
any formula Fi (where 1≤i≤n) is either an axiom or can be derived from 
one or more of the formulas in the sequence F1, … ,Fi-1 in accordance 
with the rules of inference. This definition of  proof brings us to the 
definition of a theorem as a formula which occurs as the last formula Fn 
in a sequence of formulas F1, … ,Fn, that composes a  proof.

By such a clarification of alphabet, formula, axiom, rule of inference, 
 proof, and theorem, one gets a definition of formals system, and, as a 
consequence, a definition of ma thematics according to  formalism.

Logical positivism

The  formalist interpretation of mathematics had a huge impact on the 
formulation of  logical positivism as a philosophy of science in general. 
According to  logical positivism, mathematics and scientific theories have 
to be kept strictly detached, not only from intuition, but from any form 
of contextualisation. They have to be kept separated from subjective 
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preferences,  religious convictions, ethical principles, cultural traditions, 
political priorities, and from any form of metaphysical thinking.

In  A Mathematician’s Apology,  Hardy formulated a thesis of innocence, 
with respect to what he referred to as ‘real’ mathematics. This thesis, 
however, invoked the much broader dogma of  neutrality, according 
to which any form of mathematics can be researched and developed 
separately from ethical and political considerations.  Logical positivism 
establishes an even much broader dogma of  neutrality according to 
which not only mathematics, but also science in general, can be kept, 
and must be kept, ethically and politically  neutral. This dogma came to 
dominate the perspective on mathematics and science, and was rarely 
questioned until the late 1960s, when critical conceptions of mathematics 
and of sciences were formulated.8 

The  Vienna Circle, as organised by Moritz  Schlick (1886–1936), 
included philosophers, scientists, and mathematicians. Rudolf  Carnap 
(1891–1970), Herbert  Feigl (1902–1988), Kurt  Gödel (1906–1978), Hans 
 Hahn (1879–1934), Otto  Neurath (1882–1945), and Friedrich  Waismann 
(1896–1959) were among them.9 The Circle was deeply engaged in 
actual developments in science and mathematics. They studied Albert 
 Einstein’s formulation of the theory of  relativity, and the principles 
of quantum mechanics.  Hilbert’s metamathematical programme was 
carefully discussed, and recent developments in formal logic were 
investigated. In 1929,  Gödel completed his PhD studies in formal logic 
with Hahn as his supervision,10 and two years later he presented his 
famous incompleteness theorem.  Wittgenstein ’s  Tractatus, published 
in 1922 in a German-English parallel edition, was studied carefully 
by the Circle. It provided a principal inspiration for formulating the 

8  See Chapter 11 in this volume for the formulation of a critical conception of 
mathematics.

9  Several other people became associated with the  Vienna Circle, for instance Hans 
Reichenbach, who worked in Berlin. Together with  Carnap, he edited the journal 
Erkentnis (Knowledge) that expressed the outlook of  logical positivism. Carl 
 Hempel also worked in Berlin. Karl  Popper was around, but even though he was 
actively contributing to the discussion of science and shared many of the concerns 
of the  Vienna Circle, he was never invited by  Schlick to join.

10  The result of this study is found in  Gödel (1967). By proving the completeness 
theorem of predicate logic,  Gödel demonstrated that Frege’s intuition was sound; 
the axiom system that he presented in the  Begriffsschrift as the foundation of 
predicate logic was in fact complete.
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overall position of  logical positivism including the dogma of  neutrality. 
 Wittgenstein was also invited by  Schlick to join meetings of the Circle.11

Members of the  Vienna Circle were deeply concerned about political 
developments including the growing anti-Semitism. For them,  Nazi 
conceptions such as ‘Arian Physics’ or ‘degenerate Jewish  physics’ 
had nothing to do with science; as meaningless metaphysical notions, 
they had to be eliminated from any scientific outlook. Looking more 
carefully at scientific theories, one might find a broader range of 
metaphysical assumptions and preconceptions, not only of political but 
also of philosophical,  religious, and psychological nature. According to 
the  Vienna Circle, all such features of metaphysics had to be eliminated 
from science. They found that they were facing a huge task in a most 
difficult period of time, namely to clean up science and to ensure that it 
got its proper neutral format.12

In an attempt to eliminate metaphysics from the domain of science, 
the  Vienna Circle formulated the principle of verification. According to 
this principle, a statement has a meaning if and only if it is possible 
to specify some observations that can serve as empirical evidence for 
that statement. If such a specification is not possible, the statement is 
meaningless. As an example, we can take the statement ‘God is almighty.’ 
As one cannot point out any possible empirical observations that could 
support this statement, it is meaningless. In general,  religious claims 
end up in the waste bin together with any other forms of supposed 
nonsense. So do many statements from  psychology and psychoanalysis. 
The waste bin also becomes stuffed with ethical statements, as no 
empirical evidence for such statements can be identified. Furthermore, 
established disciplines such as  physics need critical investigations since, 
for instance, the concept of force might include metaphysical features.13

A variety of specific formulations of the principle of verification 
was carefully investigated by the  Vienna Circle. However, it turned out 
that whatever formulation one gave the principle, one could not escape 
the dilemma that either the formulation would be too loose, meaning 

11  For a careful study of the  Vienna Circle, see Stadler (2015). For captivating 
presentations of the  Vienna Circle, see Edmonds (2020), and Sigmund (2017).

12  Carnap (1959, first published in Erkenntnis in 1932) made a powerful presentation 
of this cleaning programme.

13  See Jammer (1957).



90 Breaking Images

that obvious metaphysical statements came to count as meaningful, 
or it would be too tight, meaning that general natural laws of  physics 
became relegated as meaningless. Furthermore, what about the very 
principle itself? How could you verify the principle of verification? As 
it appears impossible to specify what empirical evidence might support 
the principle, it seems itself to become meaningless.14

The approach to eliminate metaphysics, however, also followed 
another much more powerful departure.  Logical positivism expressed 
a huge doubt with respect to  natural language. In doing so, it drew 
directly on the  formalist conception of mathematics. The grammar of 
 natural language was all too loose, making ample space for formulating 
any kind of statement, also with a profound metaphysical content. 
Natural language opens an extensive space for expressing nonsense 
in grammatically correct ways. When used as the language of science, 
 natural language must be under suspicion.15

In the  Tractatus,  Wittgenstein (1992) assigned a particular role to 
formal language. Here he consistently talks about language as singular, 
and it really has to be read as the language. This is the formal language 
from  Principia Mathematica, and the language that  formalism had 
cultivated. This language  Wittgenstein sees as the language of science, 
emphasised throughout the Tractatus and brought together in §6 and §7. 
In the concluding paragraph of the Tractatus, one can read:16

§7 Whereof we cannot speak about, thereof one must be silent.

Many times, this paragraph has been read as an elegant and artistic 
conclusion of the book, but it is much more than that. It condenses 
 Wittgenstein’s whole conception of science and ethics. §7 has to be read 
together with §6. While §7 states what cannot be said, §6 states what can 
be said:

§6 The general form of a truth-function is: [p̅, ξ̅, N(ξ̅)]. This is the general 
form of proposition.

14  An overview of the discussion of the principle of verification is presented by 
 Hempel (1959), first published in 1950.

15  One important contribution to the critique of  natural language was previously 
formulated by  Russell (1905) in the article ‘On Denoting’.

16  There exist several translations of the Tractatus into English. Here I cite the first 
translation by C. K. Ogden from the original German-English edition of 1922.
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By a truth-function,  Wittgenstein refers to a property of a composed 
proposition, namely that its truth value is determined by the truth 
values of the propositions of which it is composed. The expression  
[p̅, ξ̅, N(ξ̅)] is  Wittgenstein’s shorthand for an arbitrary proposition built 
up by logical connectives.17 Wittgenstein claims that any proposition has 
this form. If a linguistic formulation does not have the property of being 
a truth-function, it must, according to §7, be passed over in silence. 
 Wittgenstein’s claim is that the language of science is truth-functional.18

This claim was carefully discussed by the  Vienna Circle. In the  Logical 
Syntax of Language, the original German version of which was published 
in 1934,  Carnap (1937) elaborated on the claim that a formal language 
can serve as the language of science. The discussion is rich in details, 
and  Carnap recognised that one needs to apply a version of formal logic 
with a higher degree of complexity than the one  Wittgenstein referred 
to in the  Tractatus. I see  Carnap’s discussion in  Logical Syntax of Language 
as a careful elaboration of the clue provided by  Wittgenstein in §6 of 
Tractatus.

What now to think of that which cannot be expressed in formal 
language? As mentioned,  Wittgenstein’s answer comes in §7: Remain 
silent!  Logical positivism agrees: Science has to concentrate on what can 
be expressed in formal language, and to leave the rest aside. Thus, §7 is 
a condensed expression of the claim that no metaphysical elements can 
be part of science, whether they take the form of  religious convictions, 
political positions, or ethical principles. Together §6 and §7 provide as 
condensed formulation of the total separation between science and any 
value statements.

17  The connectives could be  and , as used by  Whitehead and  Russell in  Principia 
Mathematica. In 1913, Henry  Sheffer showed that it is possible to define the other 
connectives from just one connective, now referred to as the Sheffer stroke. 
Informally, the Sheffer stroke can be defined as ‘not both’, meaning that it occurs 
as a negation of a conjunction. In  Wittgenstein’s symbolism, the Sheffer stroke 
is referred by be the symbol . Thus by  Wittgenstein refers to an arbitrary truth-
function expressed by means of the Sheffer stroke.

18  The formulation seems to indicate that  Wittgenstein thinks of the language of 
science as being that of proposition logic. That is certainly a simplistic claim. As a 
minimum, one should think of the language of predicate  calculus as a prerequisite 
for the language of science. Any formulation of laws of nature would presuppose 
such a language.
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Acknowledging the principal idea of logicism  that mathematics and 
logic are the same,  logical positivism claims that mathematics as the 
language of science ensures that science does not include metaphysical 
elements and that science turns ethically neutral. In this way we have 
reached a most profound legitimation of the doctrine of  neutrality.

Due to their explicit anti- Nazi positions and, in several cases, also 
to their Jewish origins, many members of the  Vienna Circle left Austria 
after Adolf Hitler came to power. Many escaped to the United States 
of America.19 As part of the transplantation into an English-speaking 
context, logical positivism did change. 20 From being a critical stance with 
respect to the present state of science, including a profound critique of 
 Nazi ideologies, it turned into a devise for legitimising science as, in fact, 
being detached from socio-political issues. In this way, the transplanted 
version of  logical positivism came to operate as a legitimation of what 
was taking place in most university studies in sciences and mathematics, 
not only in the USA but the world over.  Logical positivism turned into 
a legitimation of not engaging in socio-political issues as an integral 
part of any such study programmes. From providing a departure for 
a critique of science,  logical positivism turned into a broadly assumed  
convenient dogma about  neutrality.

Structuralism

Structuralism can be interpreted as an elaborated version of  formalism, 
and  structuralism had a profound impact on mathematical research. It 

19  In 1935,  Carnap emigrated to the USA.  Feigl’s parents were not  religious, but 
they were Jewish, and in 1931 he left for the USA. In 1939,  Gödel got a position 
at the Institute of Advanced Studies in Princeton, with which also  Einstein was 
associated. In 1934,  Neurath fled to the Netherlands and later on to England. 
 Waismann was a Jew, and in 1938 he emigrated to the USA. In 1933, Reichenbach 
was dismissed from his work due to his Jewish background, and in 1938 he moved 
to the USA.  Hempel’s wife was of Jewish origin, and in 1937 they emigrated to 
the USA.  Popper had Jewish origins as well, and in 1937 he emigrated to New 
Zealand.

20  The first English introduction to the ideas of the  Vienna Circle was presented 
by Ayer (1970), when he published Language, Truth and Logic in 1936. Other 
presentations in English are found in Ayer (1959),  Carnap (1962),  Hempel (1970), 
and Reichenbach (1966). In 1961, Newman (1979) published The Structure of 
Science, which is a textbook-like presentation of how to do science.
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resulted in a restructuration of mathematical theories, which included 
the formation of new mathematical notions and structures.

Structuralism acknowledges the importance of outlining the alphabet, 
defining the formulas, and enumerating the axioms for developing a 
mathematical theory. Structuralism also emphasises the importance 
of specifying the nature of  proof, although without operating with 
an explicit enumeration of rules of inference. With respect to proving, 
 structuralism sticks to the practice of mathematics, according to which 
proving must be strictly logical and transparent. There is no application 
of any form of intuition in mathematical proving; no figures or  diagrams 
are necessary, not even in  geometry. In this sense,  structuralism assumes 
the whole approach of eliminating intuition from mathematics.21

Nicolas  Bourbaki was an important exponent of  structuralism. In some 
places, one can read that he worked at the Royal Academy of Poldavia, 
in other places that he was associated with the University of Nancago. 
However, behind the collective pseudonym one finds mathematicians 
including André  Weil (1906–1998), Henri  Cartan (1904–2008), Claude 
 Chevalley (1909–1984), and Jean  Dieudonné (1906–1992). Over time, 
many more people have contributed to the collected works of Bourbaki.22

The  Bourbaki working group was established in the mid-1930s. The 
original idea was to write a university textbook in mathematical analysis 
covering recent developments in mathematics. Soon, however, the work 
became much more ambitious and turned into a project of providing a 
systematic presentation of major parts of mathematics. The first volume 
of  Elements of Mathematics (Éléments de Mathématique) was published in 
1939 (Bourbaki, 2004). It provides a presentation of  set theory, which 

21  The formal logical systems, as presented in the  Begriffsschrift or  Principia 
Mathematica, operate with two rules of inference that easily can be stated explicitly. 
But if we are dealing with a mathematical formal system, such as  Peano’s 
axiomatics for the natural numbers, many more rules of inference are going to 
be applied. But which? One could stipulate that the set of possible inferences 
for a  Peano axiomatics correspond to the theorems in, say,  Principia Mathematica. 
This seems consequential, as  Principia Mathematica presents a system of valid 
inferences. However, the situation is more complex than that. There are forms 
of mathematical reasoning which are not captured by any theorem in  Principia 
Mathematica, but which are broadly applied in making mathematical deduction. 
For mathematical research practice, also as shaped by  structuralism, the 
implication is that the rules of inferences are not enumerated, but inferences are 
kept as transparent as possible.

22  See, for instance, Bourbaki (1950) and  Dieudonné (1970).
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was considered the basis of mathematics; this idea  Bourbaki shares with 
 Frege,  Whitehead, and  Russell, and logicism  in general. Many more 
volumes of  Elements of Mathematics followed covering topics like  algebra, 
topology, and topological vector space.

Historically, there is a connection between  formalism and  Bourbaki’s 
 structuralism via Emmy  Noether (1882–1935) who, for a period, worked 
at the mathematical department at Göttingen University, directed by 
 Hilbert. Bartel van der  Waerden (1903–1996) was one of her students, 
and his book  Modern Algebra, first published in two volumes in 1930 and 
1931, was deeply inspired by  Noether’s lectures. The book is referred 
to by  Dieudonné as an important resource for the  Bourbaki group, 
preparing as it did for the definition of several of the formal structures 
to which they referred.

The  Bourbaki group met a few times per year. At such meetings, 
manuscripts were presented and discussed carefully, sometimes being 
read aloud and criticised sentence by sentence. Alternative suggestions 
for completing a  proof were suggested as well as alternative definitions 
of concepts. The meetings had no chair, and the discussion could be 
heated. When a manuscript had been worked through, a different 
member of the group got the task of presenting a revised version of the 
manuscript at the following meeting. This procedure continued meeting 
after meeting until consensus was reached.

Only one formal rule guided the work in the group, namely that, on 
turning fifty years old, the member had to leave the group. New members 
had to be recruited, and if members became aware of particular gifted 
students, they could be invited to join a meeting. Any newcomers who 
did not make significant contributions were dropped, though a second 
invitation could be considered.

It was presupposed that the members of the group had broad 
interests in mathematics since the work in the group was not for narrow 
specialists, the principal aim being to identify relationships between 
different areas of mathematics.  Bourbaki tried to identify how structures 
and  proofs in one area appeared similar to structures and  proofs in 
other areas. When such similarities were identified, the challenge was to 
make them explicit, and  Bourbaki identified a range of such overlapping 
structures.
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Mathematics is in rapid development, new theories and new concepts 
are constantly emerging. How can we effectively integrate and update 
all these developments?  Bourbaki provided a suggestion. The  Elements 
of Mathematics can be read as a kind of mathematical encyclopaedia, 
organised not in alphabetic order, but structurally.

Chapter 1 in the first volume of Elements of Mathematics makes a 
presentation of what is to be understood by formal mathematics. By 
making this start,  Bourbaki explicitly takes a  formalist departure. 
Chapter 2 presents  set theory, defining notions like order pair, function, 
and correspondence. Chapter 3 addresses ordered sets, cardinals, and 
integers, while the final Chapter presents the notion of structure.

The crucial notion is structures, which became the building blocks of 
 Bourbaki’s architecture of mathematics. In order to describe a structure, 
the properties of its elements are without significance.  Bourbaki agreed 
completely with  Hilbert’s formulation in the  Foundations of Geometry, 
when he enumerated objects like ‘point’, ‘line’, and ‘plane’ without 
specifying anything about these objects. The only thing relevant is to 
specify how they relate to each other, and this is done in terms of the 
axioms defining the structure.

Through  Bourbaki’s profound studies of a variety of mathematical 
theories, three mother structures were identified: (1) a set organised by 
an operation; (2) a set organised by a relation; and (3) a set organised 
by a topology. The group (G,∘) is an example of a set G organised by 
an operation ∘ which is a function of two variables from G×G to G. The 
group (G,∘) fulfils the axioms:

1. ∀a,b,c ∈ G: (a∘b)∘c = a∘(b∘c)

2. ∃n ∈ G: ∀a ∈ G: a∘n = n∘a = a

3. ∀a ∈ G: ∃a-1 ∈ G: a∘a-1 = a-1∘a = n

One theorem in  group theory states that there is only one neutral element. 
The  proof runs like this: Assume that there exists two neutral elements n1 
and n2. According to the definition, we would have n1 = a∘a-1 as well as n2 

= a∘a-1. From this we can conclude that n1 = n2. Group theory developed 
further along such lines. The departure is the axioms, and nothing 
but axioms, and the proving needs to be logically straightforward and 
transparent. The group structures can be recognised in a variety of 
mathematical disciplines:  number theory,  geometry, vector  calculus, etc.



96 Breaking Images

By means of the mother structures, a huge amount of other 
mathematical structures can be defined. Notions like ring, field, 
ordered field, vector space, and  Hilbert space can be defined, and the 
many different classic disciplines start growing together in the same 
architecture.

By emphasising the importance of mother structures,  Bourbaki 
diverged from a traditional  formalist outlook as, for instance, 
summarised by Haskell  Curry (1970) when he states that the ‘essence 
of mathematics lies […] not in any particular kind of formal system, 
but in formal structure as such’ (p. 56).  Bourbaki does not assume any 
such relativism, but finds that some structures are more important 
than others to the extent that they express fundamental similarities 
between apparently different mathematical disciplines. That we are 
dealing with three mother structures is not any a prior given. It is an 
insight that emerged from the discussions in the  Bourbaki group. More 
mother structures could be identified as mathematics develops. What 
we are dealing with is just a summing-up of structures identified by a 
certain group of mathematicians at a certain moment in the  history of 
mathematics.

The  Bourbaki group took as its point of departure the current state 
of mathematics. For identifying structures, they did not consider any 
historical developments that have brought forward the mathematical 
ideas and theories. Nor did they pay attention to possible applications of 
mathematics. Applications were not considered relevant for identifying 
mathematical structures.

Through a profound de-contextualisation of mathematics, 
 Bourbaki’s  structuralism repeats the separation between mathematics 
and socio-political issues as advocated by  logical positivism. I interpret 
 structuralism as a principal example of how the dogma of  neutrality 
can be acted out within mathematics research. Most ironically, however, 
 structuralism gained a profound social impact through a widespread 
reformation of mathematics education.

The Modern Mathematics Movement

The seminar New Thinking in School Mathematics took place over 
twelve days in 1959 at Cercle Culturel de  Royaumont, a more than 
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700-hundred-year-old abbey located north of Paris. The seminar was 
organised and financed by the Organisation for European Economic 
Co-operation ( OEEC), later to become the  Organisation for Economic 
Co-operation and Development ( OECD).

In the peaceful environment provided by the  Royaumont Abbey, an 
important feature of the  Cold War was addressed. The tension between 
the East and the West had been steadily growing, and the military 
potentials were a crucial factor. The assumption had been, at least in the 
West, that the USA was well ahead of the  Soviet Union with respect to 
technology in general, and military technology in particular. 

One important element of military technology was the capacity for 
deploying rockets, and it came as a major shock to the West when in 
1957 the  Soviet Union launched their first  Sputnik.

The seminar New Thinking in School Mathematics was provoked by the 
 Sputnik shock. It became accepted that in order to advance technology, 
recognised as an urgent matter, radical improvements in mathematics 
education were necessary. At the seminar, the mathematician Marshall 
H.  Stone gave the introductory lecture and highlighted that the ‘teaching 
of mathematics is coming to be more and more clearly recognized as the 
true foundation of the technological society which it is the destiny of 
our time to create’ (p. 18). This and others of his formulations resonated 
nicely with the overall  OEEC rationales for organising the seminar. 
However, right after the opening lecture, the seminar took an abrupt 
turn and references to social and technological issues were forgotten.

In his lectures, which turned out to become the principal reference 
for the whole seminar,  Dieudonné presented drastically new ideas 
about the content of secondary school mathematics. (As mentioned, 
 Dieudonné was born 1906, meaning that he had turned fifty years old 
and therefore had to leave the  Bourbaki group. This might have created 
space for him to engage in other activities.) He started his lecture this 
way:

My specific task today is to examine, from the point of view of present 
 curriculum in mathematics in universities and engineering schools: (a) 
What mathematical background professors in these institutions would 
like to find in the students at the end of their secondary school years. 
(b) What they actually get. (c) How it would be possible to improve the 
existing situation. ( OEEC, 1961, p. 31)
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 Dieudonné’s perspective is clear: a reform of the mathematical  curriculum 
at secondary schools has to be guided by the actual  curriculum at the 
university level. He asks for a radical updating of the  curriculum:

The  curriculum of the secondary schools has to be reorganised in order 
to eliminate any undue waste of time and to absorb as much as possible 
of the burden now resting entirely of the university as is compatible with 
the intellectual capacities of the children. (p. 34)

What reorganisation, then?

In the last 50 years, mathematicians have been led to introduce not only 
new concepts but a new language, a language which grew empirically 
from the needs of mathematical research and whose ability to express 
mathematical statements concisely and precisely has repeatedly been 
tested and has won universal approval. But until now the introduction 
of this new terminology has (at least in France) been steadfastly resisted 
by the secondary schools, which desperately cling to an obsolete and 
inadequate language. And so when a student enters the university, he 
will most probably never had heard such common mathematical words 
as, set, mapping, group, vector space, etc. (p. 34)

 Dieudonné wants a conceptual updating of secondary school 
mathematics. He is not referring explicitly to the work of  Bourbaki, 
but it is clear that his suggestion reflects his  structuralist outlook. The 
 curriculum of secondary school mathematics has to be developed 
around the basic mathematical structures.

This demand,  Dieudonné turned into a slogan: ‘ Euclid must go!’ 
For centuries,  Euclid’s  Elements had existed as a principal departure for 
mathematics education. The Elements provided a path whereby  proofs 
led to one theorem after the other. This path has been assumed to reveal 
the genuine nature of mathematics. But according to  Dieudonné, this 
approach belongs to the museum of mathematics.  Euclid must go in 
order to make space for a relevant updating of the whole discipline.23

‘ Euclid must go!’ condenses clearly the  structuralist concern with 
respect to intuition. Intuitions had been incorporated in the whole 
 Euclidean presentation of  geometry. This became obvious when  Pasch 
and  Hilbert made explicit the many ‘hidden axioms’ in  Euclid’s Elements. 
That intuition had brought the deductive processes forward had been 

23  See also Dieudonné (1973).
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hidden by the presence of  diagrams. Diagrams should not have any role 
to play in mathematics, but in  Euclid’s  Elements they did. According to 
 structuralism, this diagram-based intuition had to be eliminated, and in 
particular  structuralist presentations of  geometry could be completed 
without any use of  diagrams.

Mathematicians from around the world with an interest in mathematics 
education joined the seminar. They listened to  Dieudonné’s presentation, 
discussed over the twelve days, and gained much inspiration. From 
Denmark participated Svend  Bundgaard, a mathematician from Århus 
University, and Ole  Rindung, particularly interested in secondary 
school mathematics. At the seminar, it was decided that an expert group 
should be brought together in order to provide a synopsis for the new 
 curriculum for secondary school mathematics. The group had sixteen 
members, including Erik  Kristensen, also from Århus University. In 
August–September 1961, the group met in Dubrovnik, and in 1961 their 
report Synopsis of Modern Secondary School Mathematics ( OECD, 1961) 
was published.

A few years later,  Rindung and  Kristensen published the first volume 
of a mathematical textbook for the Danish Gymnasium for sixteen- to 
nineteen-year-old students. This textbook was radically different from 
what had been seen until then. It started with  set theory, and right from 
the beginning the symbolic language of formal logic was brought into 
operation. The principal mathematical structures were presented, and a 
new path into the whole landscape of mathematics was defined.

Soon there appeared textbooks for fourteen-year-old students at 
the Danish Folkeskole for six- to sixteen-year-old students, starting 
with  set theory. Simultaneously, textbooks for  teacher education and 
for in-service training of  teachers became published, all reflecting the 
idea that  set theory provided the start of learning mathematics. Bent 
 Christiansen from the Royal Danish School of Educational Studies was 
deeply engaged in implementing the reform by developing material 
for  teachers as well as for students. Soon appeared textbooks for six- 
to seven-year-old children starting with  set theory. In the end, the 
 structuralist approach came to dominate mathematics education in 
Denmark, at least for a while.

My reference to the development in Denmark serves as an illustration, 
as what took place in Denmark took place, mutatis mutandis, in many 
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other countries as well. We are dealing with a most powerful reform 
movement. I am not aware of any other educational reforms with such 
an immediate impact.

The  Modern Mathematics Movement covered mathematics education 
through new structures together with an implicit claim about  neutrality, 
totally distancing it from socio-political issues. Mathematical structures 
were the focus, not what could be done by means of mathematics. 
Although the rationale for the  Royaumont Seminar was both economic 
and political, the  structuralist outlook annihilated all such ‘externalities’. 
Structuralism focused on intrinsic features of mathematics, and it 
represented the ultimate de-contextualisation of both mathematics 
research and of mathematics education. It provided the final step of the 
ambition of  logical positivism of characterising mathematics as neutral, 
establishing the dogma of  neutrality.24

Poor Piaget!

In the middle of the 1970s, when the  Modern Mathematics Movement 
was in full swing, and when I started studying mathematics education, 
one found references to the work by Jean  Piaget everywhere. There 
appeared to exist a clear connection between his formulations of a 
genetic epistemology and the  Modern Mathematics Movement.

When I first looked through the report from the  Royaumont Seminar, 
I was surprised not to find any references to  Piaget. It appeared to me that 
the implementation of the  Modern Mathematics Movement came before 
its epistemological justification. I became interested in clarifying better 
the nature of  Piaget’s genetic epistemology. An important resource for 
me was the book Mathematical Epistemology and Psychology, written by 
Ewert  Beth and Jean  Piaget (1966), which first appeared in French in 
1961. The book is divided into two parts, the first written by Beth, the 
second by  Piaget.25

24  In this way,  structuralism cemented the ground-zero from which  critical 
mathematics education was to sprout, to which I return in Chapter 11 of this 
volume.

25  Beth was deeply interested in the foundation of mathematics. His book of more 
than 700 pages, The Foundations of Mathematics (Beth, 1968), first published in 
1959, provides a most elaborated discussion of foundational issues. See also  Piaget 
(1970).
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In his part,  Piaget refers to a seminar that took place in 1952, in 
which both  Dieudonné and he participated.  Dieudonné presented the 
 structuralist view on mathematics as formulated by  Bourbaki, and he 
outlined the nature of the three mother structures.  Piaget presented 
how he had studied children’s operations with objects, and how he had 
condensed his observations by means of three operational structures. 
 Piaget tells that the high degree of correspondence between the three 
mother structures and the three operational structures appeared as a 
surprise to those participating in the seminar, and also to  Piaget himself.

What can be concluded from such an observation of similarity? 
One can make a step further than just acknowledging similarities by 
claiming that there exists an intrinsic connection between the two 
types of structures. As the mother structures are the basic building 
blocks in  Bourbaki’s architecture of mathematics, one can be tempted 
to stipulate children’s operational structures as being the genetic roots 
of mathematics. To me, this stipulation constitutes the departure for 
 Piaget’s genetic epistemology. The seminar in 1952 might be the occasion 
where this idea emerged.

The idea of a genetic epistemology is original. A classical empirical 
interpretation of the roots of mathematical knowledge has highlighted 
that mathematical concepts and insights emerge from observations of 
properties of physical objects. One experiences a very smooth surface, 
and one gets to the concept of a plain. One makes addition of different 
objects, and one gets to the basic laws of  arithmetic.  Piaget’s idea is 
different. He sees reflections on operations with objects as being the root 
of mathematics.

On various occasions, Hans  Freudenthal pointed out that  Piaget 
completely misunderstood the nature of Bourbaki’s work.26 According to 
 Freudenthal,  Bourbaki’s suggestion for an architecture of mathematics 
just represents a particular event in the  history of mathematics. The 
identified mother structures could have been different; their identification 
depended on the heated discussions in the  Bourbaki group. What ended 
as the architecture was just a historical coincidence.

To  Freudenthal it appears arbitrary, if not simply misunderstood, 
to conclude that – due to similarities between children’s operational 

26  In Chapter 7 of this volume, we will look more carefully into  Freudenthal’s view 
on mathematics; here I restrict myself to mentioning his critique of  Piaget.
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structures and some structures identified during the late 1930s by a 
group of French mathematicians – one had identified the genetic roots of 
mathematics. To me as well, it appears arbitrary, if not misunderstood. I 
find that the references to  Piaget accompanying the  Modern Mathematics 
Movement first of all served as a questionable legitimisation of what 
was taking place.  Freudenthal (1973) points out the following:

Poor  Piaget! He did not fare much better than  Kant, who had barely 
consecrated  Euclidean space as ‘a pure intuition’ when non- Euclidean 
 geometry was discovered!  Piaget is not a mathematician, so he could 
not know how unreliable mathematical system builders are.  Bourbaki’s 
system of mathematics was not yet accomplished when the importance 
of categories was discovered. There can be little doubt that categories 
will be a new organizing principle and that rebuilding of  Bourbaki’s 
structure in categorical style will leave no stone left on top of another. 
If a leading development psychologist could then convince us of the 
categorizing genesis of all mathematical concepts – which will certainly 
eventually happen – then it will just be in time to see the categorical style 
mathematics, before it is ready, being pulled down in favour of some 
new principle, which will certainly have its day. Mathematics is never 
finished – anyone who worships a certain system of mathematics should 
take heed of this advice. (pp. 45–46)

 Piaget’s genetic epistemology recapitulates the complete separation 
between the learning of mathematics and socio-political issues. His 
theory is about patterns of ‘natural growth’, and not about social and 
critical reflections.27

The dogma of  neutrality was established as integral part of the 
 formalist outlook on mathematics. From there is became articulated 
by  logical positivism as a much broader dogma of  neutrality, not only 
with respect to mathematics but with respect to science in general. 
 Structuralism represents a further development of the  formalist outlook 
with a profound impact on the mathematical research practice and the 
formation of mathematical theories. Structuralism embraces the dogma 

27  This separation is repeated by Ernst von  Glasersfeld’s radical  constructivism, 
which represents a further elaboration of  Piaget’s genetic epistemology. In a 
conversation with me, Christine  Keitel told that once she had the opportunity 
to ask  Glasersfeld how he saw social and political issues related to mathematics 
education.  Glasersfeld found the question interesting, but admitted that he had 
never thought about it.
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of  neutrality, and via the  Modern Mathematics Movement this dogma 
became propagated in mathematics education.
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