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13. How children, under 
instruction, develop mathematical 

understanding

 Brian Greer

The relationship between the development and institutionalisation of 
mathematical understanding across millennia and its development for an 
individual child is the starting-point for this chapter. Greatly influenced by the 
writings of Hans ﻿Freudenthal, a position is taken in opposition to the theory 
propounded by Jean ﻿Piaget. The counterposition emphasises that a child can 
only be said to acquire any but the most elementary mathematics under more 
or less formal instruction and other forms of social and cultural interactions. 
The perennial debate about the relative weights that should be afforded in school 
mathematics to procedural competence and deep understanding is also related to 
the historical development of mathematics, particularly in relation to conceptual 
restructuring. This relationship is illustrated by the progressive enrichments of 
what is meant by ‘number’ and the basic arithmetical operations. The expansion 
of mathematical ﻿modelling from physical phenomena to the complexity of human 
interactions remains to be adequately addressed in school mathematics. And the 
question ‘What is mathematics education for?’ should be constantly revisited.

Introduction

How humanity collectively has created and ﻿systematised mathematics 
as a discipline is sketched in Chapter 2 of this volume. This chapter is, 
likewise, necessarily extremely selective. The vast literature on theory 
and research related to the teaching and learning of mathematics (e.g., 
Lerman, 2020) is minimally touched upon. The focus is restricted 
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largely to the context of formal schooling (not including the tertiary 
level) in advanced industrial countries. The fascinating relationship 
between mathematics and language is barely touched upon. Many of 
the assertions made are offered as hopefully provocative (in the best 
sense of the word) speculation.	

Building on Chapter 2, I attempt to elucidate the complex relationships 
between the development of mathematics as a project of humanity 
and the development of mathematics as a project for a contemporary 
school pupil and his/her ﻿teachers and others in social/cultural/political 
contexts. To provide an overview, the following key points will serve as 
an advance organiser:

1.	 Millennia versus years. Many have pointed to the immense 
challenge that is implied by expecting children to learn in a few 
years mathematics that took the combined intellectual efforts 
of humankind millennia to develop. Insofar as the individual 
development of mathematics happens, it happens under 
instruction in schools, and in other milieux, with the benefit of 
resources created and ﻿systematised during history, refined by 
evolutionary processes. Any precise correspondence between 
the two projects is simplistic.

2.	 School mathematics should be democratic. The number of people 
who become academic or professional users of formal or 
technical mathematics is small in relation to essentially 100% 
of children who attend formal schools where such exist and 
spend a lot of time in mathematics classes. Accordingly, it 
seems reasonable to recommend that mathematics education 
should be designed to serve the bulk of the population, 
while by no means neglecting cultivation of the next cadre of 
mathematical specialists. In pursuing this ideal, the guidance 
of mathematicians is obviously necessary, but far from 
sufficient, and sometimes obstructive. 

3.	 Curricular issues. School mathematics ﻿curriculum has been 
showing signs of rigor mortis for decades, characterised as it is 
by inertia, slowness to incorporate new content and resources, 
dominated by the twin fetishes of ﻿algebra and ﻿calculus, 
permeated by premature formalisation, failure to address 
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the nurturing of critical attitudes towards, and ﻿agency about 
applying, mathematics. 

4.	 Intellectual rights. Children should be accorded intellectual 
rights, including the right to sense-make, to receive teaching 
that is developmentally appropriate and conducive to 
understanding, and that is relevant to issues important to 
them, their future as adults, and their communities and 
cultures. 

5.	 The dynamic balance between ﻿homogenisation and ﻿diversity. 
Within academic mathematics there is constant interplay 
between what Ian ﻿Hacking (2014, p. 13) calls ‘unification and 
diversification’. In contrast to the diversity of manifestations 
of mathematics within cultural practices, applications and 
work, and everyday life, school mathematics is becoming 
locally and globally more homogenised, in particular due to 
the convergence of ﻿curricula and standardised ﻿testing. 

6.	 Two faces of mathematics. Mathematics may be thought of 
as having two faces. On the one hand, there is the formal 
apparatus of ﻿pure mathematics; on the other, there is the use of 
mathematics in modelling﻿ aspects of reality, including physical 
phenomena and, increasingly for some time, phenomena 
involving the complexities of human life.

7.	 Two places of mathematics. Children learn mathematics beyond 
school, whether under some form of instruction (for example, 
by parents or community members) or through their own 
﻿creativity when interacting with their environments, and 
by absorbing manifestations of mathematics within their 
cultures. Much more could be done to articulate the learning 
that occurs in the two places.

An overarching question is: ‘What is mathematics education for?’. This 
cannot be separated from a consideration of the ethical responsibilities of 
mathematicians and mathematical educators. Mathematics education, 
like mathematics itself, is embedded in historical, cultural, social, and 
political – in short, human – contexts. And the challenge is to embrace 
the possibility that things can be different.
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Under instruction, for understanding

Teaching is one of the immense social influences that can affect a child, 
but its effects can be out of proportion to any other kind of social 
influence once the first beginnings of a child’s life are past. In it once 
again knowledge builds on knowledge, but the form of experience that 
makes it possible is really quite unlike those forms of experience that 
come the individual’s way when teaching is not involved. (Hamlyn, 
1978, p. 144)

In my opinion, David ﻿Hamlyn’s point is particularly true when it comes 
to mathematics teaching/learning. As argued further below, it makes no 
sense to posit that any child could formulate much, for example, about 
﻿fractions and operations on them without instruction from others, and 
without a collective representational system. The origins of mathematical 
cognitive activity may be traced, as Jean ﻿Piaget has it, to reflection on 
actions on the physical environment, but how far can that take one? 
Likewise, the neuroscientists – in their study of how people develop 
constructs about number, in particular – seem to exhibit the same form 
of what might be called the foundationalist fallacy, namely that the 
development of any complex, multi-levelled edifice of understanding 
can be analysed by focusing on its beginnings. 

In Chapter 2, the notion of universities and other institutions/sites 
as constituting constructed environments for the doing of mathematics 
was introduced, and the same, of course, goes for mathematics classes 
within schools. Following Jean ﻿Lave (1992) and many others, it will be 
emphasised that children learn much more than technical mathematical 
content in such classes. They may learn or be taught, in some general 
sense, to think mathematically (if they are lucky), for example to become 
solvers of mathematical problems in the tradition of George ﻿Pólya. They 
are much less likely to be taught – though it is argued below that they 
should be – how mathematics is embedded in human contexts; worse, 
they may be inculcated into harmful beliefs about the dehumanising 
power of numbers and equations. Unfortunately, for too many, their 
recollections of school mathematics are suffused with ﻿alienation and 
perceived irrelevance. It will also be suggested that school mathematics 
is instrumental in forming lasting and consequential facets of an 
individual’s worldview, in particular relating to a simplistic view of 
mathematical ﻿modelling﻿.
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Researchers of mathematical teaching and learning devise their 
own particular constructed environments, as when, for example, an 
experimenter sits with a child and presents a ﻿Piagetian conservation 
task. Such activity represents one form of the general problem of 
understanding the Other. Assessment﻿ may be viewed through a similar 
lens, as an activity involving communication. As emphasised below, the 
term ‘assessment’ needs to be differentiated in relation to very different 
activity systems, from its use by the state as an instrument of control 
to its embeddedness as an integral part of teaching and learning. And, 
in general, a major issue with ﻿testing arises when the test item refers, 
at least on the surface, to ‘real-life’ scenarios, since the reactions of 
students, and indeed the evaluations of their responses, are affected by 
the degree to which the reality sketched in the item lies within the life 
experience of the person being tested, evaluating the test, or using the 
evaluations to inform their teaching.

The other emphasis implied by the title for this section reflects 
an aspiration that mathematics education produce ‘understanding’ 
as contrasted with superficial competence in ‘pawing at symbols’ 
(by analogy with Paulo ﻿Freire’s canine metaphor of ‘barking at text’, 
which he contrasted to reading in what he considered the full sense). 
‘Understanding’ is not so easy to define, but it is not difficult to exemplify, 
particularly in its absence (examples are given below). 

Beginnings and continuations

Children acquire number in the stream of their physical and mental 
activities, which makes it difficult for researchers to find out how this 
happens in detail. (﻿Freudenthal, 1991, p. 6)

Schools have existed for a long time, but not always, and there are still 
societies in which ‘our’ form of schooling is not practiced. However, 
discussion here is limited to the familiar forms of schooling, to the 
interplay between learning in and out of school, and, in particular, 
to ‘the poor permeability of the membrane separating classroom and 
school experience from life experience’ (﻿Freudenthal, 1991, p. 5).

Children develop and are taught by others before they go to school 
and once they are at school they continue to learn in out-of-school 
contexts. Consider a subset of what a five-year-old child starting school 
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might know about uses of the number 5 (beyond being able to count to 
5): her age is 5, perhaps represented by 5 candles on a birthday cake; 
everyone (essentially) has 5 fingers on each hand and 5 toes on each 
foot (‘digits’); he may be familiar with a single coin representing the 
same value as 5 coins each representing 1 with the same unit; 5 spots 
in a pattern on a die or playing card; she may live in a house numbered 
5 (between numbers 3 and 7), or travel in a bus with that number; and 
know that there are 5 days in the school week, 5/5 represents the 5th 
of May, 5.05 is five minutes past five o’clock (with the minute hand 
pointing to 1, representing 5), and on and on and on…

Many mathematicians (e.g., Schoenfeld, Chapter 14, this volume) 
report childhood insights; I can do likewise. While playing with some 
cardboard boxes (age five?) I found I had two boxes of different sizes, 
neither of which would fit inside the other. That struck me as odd, 
until a simple thought experiment involving a roughly cubical box and 
a long thin one elucidated it for me. Or take my various encounters 
with ﻿probability. As a child growing up some seventy years ago in a 
small seaside town, I had plenty of opportunities for gambling and 
so developed some intuitive understanding of probabilistic events 
(and an innoculation against gambling). Years later I was introduced 
to ﻿probability theory at school; later at college it was characterised as 
a branch of ﻿measure theory; more recently, I have written about it in 
relation to socio-cultural issues. So, it is possible to see what ﻿Piaget is 
getting at when he talks about mathematics originating in reflections on 
our actions. But there is a vast chasm between that and the mathematical 
content that even a ten-year-old is expected to engage with in school.

After a relatively short time in school, the contextual and 
phenomenological richness and spontaneous thinking of the child are 
liable to be inhibited. Further, as the child progresses through school, 
the disconnect referred to by Hans ﻿Freudenthal (cited above) may 
be strengthened through the norms of the mathematics classroom. 
Consider the following observation:

It was a lesson under the heading of ‘ratio and proportion’ and the 
﻿teacher told me that she wanted to approach the mathematical concepts 
in a practical way. So she offered […] [a scenario involving mixing paints 
to reproduce a particular colour]. The problem seemed quite clear and 
pupils started to calculate using proportional relationships. But there 
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was one boy who said: ‘My father is a painter and so I know that, if 
we just do it by calculating, the colour of the room will not look like 
the sample. We cannot calculate as we did, it is a wrong method!’. In 
my imagination I foresaw a fascinating discussion starting about the use 
of simplified mathematical models in social practice and their limited 
value in more complex problems […] but the ﻿teacher answered: ‘Sorry, 
my dear, we are doing ratio and proportion’. (﻿Keitel, 1989, p. 7)

Constructed environments of school mathematics

In Chapter 2, I introduced the idea of ‘constructed environment’ 
in relation to the doing of mathematics, and the same applies to the 
learning/teaching of school mathematics. As ﻿Lave (1992, p. 81) put it,  
schooling ‘is a site of specialized everyday activity – not a privileged site 
where universal knowledge is transmitted’.

While being mindful of the distorting lenses of contemporary 
framings, more or less similarly organised schools have been around in 
many cultures for a very long time. If you stop and think about it, there 
is something very artificial about ‘children spending large amounts of 
time in formal schools where their activity is separated from the daily 
life of the rest of the community and mediated by technologies of 
literacy and numeracy as well as specialized uses of language’ (Cole, 
2005, p. 195).

Many of the issues are exemplified very clearly in the ways in 
which ‘﻿word problems’ (or ‘story problems’) are presented in school 
mathematics (Lave, 1992; Verschaffel, Greer, & De Corte, 2000). Children 
learn that there is a ‘Word problem game’ (Verschaffel et al., Chapter 
5) whose rules include ignoring what the child knows of reality. A 
striking example is the following statement by a ﻿teacher in the course of 
a discussion with a student’s mother:

Of course, we all know that nowadays a loaf of bread costs considerably 
more than 21.5 francs. But after all, that’s not what students have to worry 
about when doing ﻿algebra problems. It’s the construction and execution 
of the mathematical expression that counts, all the rest is décor. (Van der 
Spiegel, personal communication (1997), cited in Verschaffel, Greer, & 
De Corte, p. 57, emphasis added)

More generally, the notion of the didactical contract between ﻿teacher 
and students (Brousseau, 1997) is a useful construct for describing the 
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mutual norms that are progressively created, often implicitly, governing 
interactions in mathematics classrooms. By contrast with the typically 
implicit nature of the didactical contract, Paul ﻿Cobb (e.g, Yackel & 
Cobb, 1996) advocated for explicit promotion of what he termed 
‘sociomathematical norms’. 

During their very considerable amount of time in mathematics 
classes, children form images about the nature of mathematics. Too often 
they infer from what they are exposed to that mathematics historically 
was the intellectual achievement of predominantly White males. They 
come to believe that low marks on mathematics tests are an indication 
of stupidity and a deserved lack of access to educational and economic 
opportunities. They are much less likely to form a critical disposition or 
sense of ﻿agency in relation to uses of mathematics. Likewise, they form 
images of the nature and purposes of mathematics education. For many 
of them, and repeatedly, when they ask the reasonable question ‘Why do 
we have to do this?’ they get the answer ‘Because it will be useful later’.

Students also learn, too often the hard way, about how society 
constructs success and failure (Varenne & McDermott, 2018), in 
particular through ﻿testing. That instrument is particularly powerful 
in relation to attaching numbers to mathematical performance, 
against the background of the unreasonable political effectiveness of 
‘mathematics’. In the United States, a racially coded message is sent by 
the pervasive use of the term ‘﻿achievement gaps’ when test score gaps 
are being referred to. Most generally, mathematics classrooms constitute 
constructed environments within which children learn how to fit within 
state systems.

Constructed environments of research on mathematical 
cognition

Whenever a researcher who is not the ﻿teacher engages with a child in 
order to try to understand that child’s mathematical learning or thinking, 
it constitutes another very special kind of constructed environment. 
Here I am restricting discussion to the scenarios in which a researcher 
comes from outside the school and engages, typically for a short time, 
with students one by one. Rather than cursorily survey this vast field, I 
draw attention to specific aspects. 
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Typically, in such research, the child is asked to address a task 
designed by the theorist/researcher, often involving customised 
equipment or ﻿representations. The vast range of experiments carried 
out by ﻿Piaget’s team constitute a familiar example, and will serve to 
make important points, especially through the critique of ﻿Freudenthal 
(1973, Appendix I, pp. 662–677). The typical experiment constitutes a 
very particular kind of social interaction; by analogy with the notion of a 
didactical contract, the idea of an experimental contract may be invoked. 
It is necessary to consider how the children in this situation construe 
what is going on, why they are there, what is required of them. In my 
experience and observation, such considerations are often m inimally 
addressed by experimenters.

Aligned with this framework, ﻿Freudenthal (1973) very strongly 
criticised ﻿Piaget’s insufficient attention to the language used and 
whether or how the child understands it; a parallel may be drawn with 
the role of communication in assessment﻿ (see below). Experiments on 
conservation, for example, are particularly open to this kind of scrutiny 
and a range of experiments has shown that altering the experimental 
contract or the nature of the communication in apparently minimal ways 
can have a marked effect on the responses (see, e.g., Donaldson, 1978).

Most seriously, we may ask the general question: How does the 
experimenter/theorist know that the design and presentation of the 
task, and the children’s responses, constitute an appropriate test of the 
constructs embedded in the theory? Is it possible that the experimental 
tasks and communications, consciously or unconsciously, are designed 
to support rather than test the theory? That is an extremely serious 
charge that deserves to be taken seriously. For example:

By a suggestive design of the experiments it is achieved that the subjects 
reconstruct a landscape according to the ﻿Piaget theory of multiplication 
of relations, that is by means of a Cartesian coordinate system. 
(﻿Freudenthal, 1973, p. 669)

To return to the point made in the opening quotation, in relation to 
conservation of volume, I would be much more impressed by a report 
of two children being poured lemonade from identical bottles into 
differently shaped glasses and one of them objecting that it was unfair.
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‘Assessment’

If you want to sort people, make them run a race; if you want to see if kids can 
‘do it’, then give them adequate time to ‘do it’. (Stage, 2007, p. 358)

For a long time, I have found it problematic to use the same word to refer 
to two very different families of practices. One family, the focus of this 
section, involves producing measures that allow students, and groups of 
students, to be measured and ranked, often with high stakes attached. 
Another family has to do with interacting with the student in order to 
form conjectures about the student’s understanding, cognition, beliefs, 
and so on; as such, it is an integral part of teaching/learning.

Following these introductory remarks, I consider just three from the 
vast range of relevant aspects: the analysis of assessment in terms of 
communication; the diversity of social realities in relation to attempts to 
include mathematical modelling﻿ in test items; political issues in the uses 
of ﻿testing for purposes of the state.

Assessment as communication

Concentrating on the communicational functions of assessment affords 
pointed contrasts between the two activity systems distinguished above. 
In general, assessment involves: communication to the student about a 
specific competence to be demonstrated through a particular task; action 
by the student in an attempt to demonstrate the required competence 
insofar as they understand it; some form of evaluation of that attempt; 
and communication of the interpretation of that evaluation to the 
﻿teacher and others. In these terms, a standardised written or ﻿computer-
administered test may be seen as extremely impoverished in terms of 
communication at every stage, particularly when there is no opportunity 
for clarification through subsequent iterations of communication. ‘In 
short, the typical written assessment is closed in terms of time, in terms 
of information, in terms of activity, in terms of social interaction, in 
terms of communication’ (Verschaffel, et al., 2000, p. 72).

To take a simple contrasting example, a ﻿teacher may ask a student 
to subtract 17 from 24 and the student might give the answer ‘13’. The 
﻿teacher may conjecture that the student has exhibited the ‘subtract the 
smaller from the larger within any column’ misconception and ask 



� 30313. How children, under instruction, develop mathematical understanding

further questions to test this conjecture. Finally, the communicative act 
of evaluation may consist of much more than a simple statement that the 
student’s answer was wrong, but be combined with an explanation of 
why, and of how that misconception can arise.

Assessment and modelling

Test items often resemble ﻿word problems in presenting a description 
of a real-world situation that the assessed is expected to interpret and 
model mathematically. In the absence of open communication, it then 
often happens that the model depends on the life experience of the 
generalised modeller as well as that of the testee, as in the following 
example discussed by William ﻿Tate (1995, p. 440):

It costs $1.50 each way to ride the bus between home and work. A weekly 
pass is $16.00. Which is the better deal, paying the daily fare or buying 
the weekly pass?

It should be obvious that assumptions made (e.g., that work occurs five 
days a week) will affect a person’s interpretation and response and that 
the person’s form of life will influence the assumptions made. There 
is no ‘right answer’ and if it is assumed that there is, and there is no 
opportunity for clarification, the item is accordingly unfit for assessment. 
In particular, as ﻿Tate (1995, p. 440) pointed out, ‘the underpinnings of 
school mathematics, assessment, and pedagogy are more often closely 
aligned with the idealised experience of the White middle class’. More 
generally, ﻿testing may be seen as an instrument of cultural violence, as 
when ‘test-score gaps’ are mislabelled as ‘﻿achievement gaps’ with no 
qualifications as to how achievement is defined.

Testing as an instrument of the state

Above all, ‘assessment’ is a political issue. Episodes of recent history 
within the United States in terms of clashes between political, corporate, 
and educational goals are analysed by Alan Schoenfeld (Chapter 14, 
this volume), a battle-scarred veteran of many campaigns. A key point 
that he makes is that another communicative function of ﻿testing is to 
convey to ﻿teachers and students what is expected, encapsulated in the 
acronym ‘﻿WYTIWYG’ (What You Test Is What You Get). Schoenfeld 
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illustrates from his experience how the ways ﻿teachers teach are liable 
to be distorted under the pressure of upcoming high-stakes tests. The 
politics of global ﻿testing are analysed by Paola Valero and Lisa Björklund 
Boistrup (Chapter 15, this volume) and Mark Wolfmeyer (Chapter 16, 
this volume).

The goal of understanding

Most people have been taught mathematics as a set of rules of processing 
– an agreeable experience when they have learned to master them, and a 

disagreeable one if they have failed. (﻿Freudenthal, 1991, p. 3)

Later, ﻿Freudenthal argues that elementary ﻿arithmetic cannot be learned 
other than through insight, but as the school student progresses to more 
advanced mathematics, ‘the learner’s insight tends to be superseded 
by the ﻿teacher’s, the textbook writer’s, and finally by that of the adult 
mathematician’ (﻿Freudenthal, 1991, p. 112).

The section title expresses an aspiration that mathematics education 
should produce ‘understanding’, something that is difficult to define but 
easy to illustrate, particularly in its absence. A simple example comes 
from Productive Thinking (Wertheimer & Wertheimer, 1982/1945). 
Children were asked (p. 130) to find what number the following 
expression is equal to: 

274 + 274 + 274 + 274 +274

5

A child who correctly computes a repeated addition, or multiplication, 
followed by a division, demonstrates computational fluency, but such 
a performance surely suggests a lack of understanding. The authors 
related his surprise that, while most of the bright students he asked 
‘enjoyed the joke’ (p. 112), ‘a number of children who were especially 
good at ﻿arithmetic […] were entirely blind’ (p. 113). 

As a second example, I posed this question to future elementary 
school ﻿teachers studying slope as represented on graphs:

A candle, initially 24 cm high, is burning down at the rate of 3 cm per 
minute. If you plot the graph of height of the candle (in cm) against time 
(in minutes), what will be the slope of the line?
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Most of the students demonstrated competence by plotting the line and 
calculating the slope; hardly any showed understanding by pointing to 
the answer (-3) given in the italicised part of the question.

A distinction may be drawn between ‘internal’ understanding and 
‘external’ understanding. The former refers to making connections, 
noticing and exploiting structure, within ‘disembedded’ (Donaldson, 
1978) mathematics, as in the example from the Wertheimers’ book cited 
above. The second example is about articulating procedures (plotting 
points and calculating slope) as opposed to understanding that slope of 
a straight line corresponds to a constant rate of change in some variable.

The relationship between procedural competence and conceptual 
understanding is central in discussions on mathematics and 
mathematics education. The problem, as suggested in the opening 
quotation, arises when procedural competence dominates (as it does in 
communicationally impoverished forms of ﻿testing).

Learning from history

We know nearly nothing about how thinking develops in individuals, but we 
can learn a great deal from the development of mankind. (﻿Freudenthal, 1991, 

p. 48) 

It is with children that we have the best chance of studying the development 
of logical knowledge, mathematical knowledge, physical knowledge, and so 

forth. (﻿Piaget, 1970, pp. 13-14)

The first obvious comment is that these quotations illustrate the chasm 
between the positions of ﻿Piaget and ﻿Freudenthal, as reflected below. 
Studying the ﻿history of mathematics is extremely difficult to do for many 
reasons, and it has often been done very poorly, as Jens ﻿Høyrup, for one, 
has made clear (Greer, 2021). The central question in this section of the 
chapter is: ‘What guidance for mathematics education can be derived 
through studying the ﻿history of mathematics?’. Many have pointed out 
that children in school are expected in a few years to come to grips with 
mathematics that took humankind millennia to develop: 

School is seen as a magical shortcut that allows ideas arduously 
developed by humanity over thousands of years to be transmitted in a 
few years to a random human being. (Hofstadter & Sander, 2013, p. 391)
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To the extent that those ideas can be transmitted, how is it possible? The 
short answer is that it is achieved predominantly through instruction in 
a constructed environment.

The position taken here is that any kind of simplistic version of 
‘ontogeny recapitulates phylogeny’ (Gould, 1985) is untenable. The 
complexity of the interactions between biological and cultural evolution 
must be addressed (Cole, 2005). Some general comments on ﻿Piaget’s 
treatment of mathematics within his theory of genetic epistemology 
are followed by a specific critique of the supposed correspondence he 
claimed between the ‘mother structures’ of ﻿Bourbaki and constructs 
within his theory of cognitive development. A contrasting position is 
based largely on ﻿Freudenthal’s (1991) conception of ‘﻿guided reinvention’ 
and James ﻿Kaput’s (1994) conception of ‘applied phylogeny’.

Among the facets of the cultural environments in which children 
grow up is the panoply of ﻿representations, both formally introduced 
within mathematics classes and encountered in the environment 
in general. Assimilation/accommodation of existing, collectively 
sanctioned, ﻿representations is a very different matter from the original 
slow development, with evolutionary selection, of those ﻿representations. 
Another glaringly obvious historical observation, evident through a 
cursory glance through Florian ﻿Cajori’s (1928) painstaking work, is that 
notations and ﻿representations are contingent, arbitrary, underdesigned 
– whether that will ever change is doubtful.

Finally, in this section, to illustrate some of the issues, I take a look at 
a particular content area, that of negative numbers. 

Simplistic parallelism: Piaget and Bourbaki

The fundamental hypothesis of genetic epistemology is that there is a 
parallelism between the progress made in the logical and rational organization 

of knowledge and the corresponding formative psychological processes. 
(﻿Piaget, 1970, p. 4)

In this section, I first offer some general assertions about the significance 
of ﻿Piaget for the study of mathematical cognition and the practice of 
mathematical education, then I specifically discuss ﻿Piaget’s claim that 
the mother structures of ﻿Bourbaki correspond to empirically supported 
developmental cognitive structures.
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﻿Piaget identified himself primarily as a genetic epistemologist, not 
a developmental psychologist. He became the latter in service of the 
former, arguing, as cited earlier, that since little is knowable about 
the origins of human thinking, the best recourse is to study children. 
Moreover:

The defining feature of ﻿Piaget’s approach […] is that the stages and 
mechanisms that he postulates are not psychological, or historical (so 
he is not ‘reporting’ an accidental parallel between the two), but rather, 
epistemological – this is how knowledge is inherently constructed. 
(﻿Kaput, 1994, p. 84)

Rather than attempt a systematic critique of this position – an enormous 
undertaking – I merely state my conviction that I find it unconvincing, 
unless it is reduced to the banal statement that knowledge grows through 
developmental processes which can be described in such general terms 
as to fit both domains. I would even conjecture that having framed his 
position on intellectual-aesthetic grounds, ﻿Piaget devoted much of his 
life as an experimentalist to confirming it. 

Further, while in the spirit of making controversial statements, I 
will suggest that in his emphasis on adaptation, initially with respect 
to the physical environment and originating in his first experimental 
investigations as a biologist studying adaptation of molluscs, ﻿Piaget 
extended, in a kind of metaphorical way, to the other environments that 
I have labelled cultural and constructed (educational). In contrast, it has 
been argued that

the contemporary study of the role of culture in human development 
is hampered by the continued failure of behavioral scientists to take 
seriously the co-evolution of phylogenetic and cultural-historical change 
in shaping processes of developmental change during ontogeny. (Cole, 
2007, p. 236)

﻿Piaget’s monumental oeuvre is of great importance, especially against 
the backdrop of ﻿behaviourism in the earlier part of the twentieth 
century (space does not allow consideration of the part played by Lev 
Vygotsky and other Russian psychologists in theorising the social, 
collective complexities of education, nor the intimate involvement of 
Russian mathematicians in school mathematics). At a macro-level, 
﻿Piaget revealed the complexity of children’s thinking; however, there 
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are several criticisms that are particularly relevant to mathematics 
education. Of these, perhaps the most important is that, in postulating 
an explanation in terms of adaptation to environment, he understated 
the differences between physical, social, political, and constructed 
environments. Having spent a reasonable amount of time studying his 
work, and doing related research on children’s cognition, I, like others, 
find the claim unconvincing that people, whether historically and 
collectively, or contemporarily and individually, construct mathematics 
through reflection on their interactions with the environment:

The epistemological approach which starts from the position of the 
individual alone is so wrong. The fact that such an approach fits in with the 
biological approach which similarly considers the individual organism in 
relation to its environment equally shows the inappropriateness of that 
as a model on which to construe the growth of knowledge and cognitive 
development generally. (Hamlyn, 1978, p. 59)

﻿Piaget believed that the ﻿systematisation of (some parts of) mathematics 
by ﻿Bourbaki, in particular their postulation of three ‘mother structures’ 
constituted a striking confirmation of his position. It is my impression 
that the ﻿Bourbaki group was willing to collude in this belief as it 
strengthened their own case to be central to a network of ﻿structuralist 
ideas. The strongest critique of the supposed relationship was made by 
﻿Freudenthal, who wrote:

Poor ﻿Piaget! He did not fare much better than ﻿Kant, who had barely 
consecrated ﻿Euclidean space as a ‘pure intuition’ when non-﻿Euclidean 
﻿geometry was discovered! ﻿Piaget is not a mathematician, so he could 
not know how unreliable mathematical system builders are. […] 
Mathematics is never finished – anyone who worships a certain system of 
mathematics should take heed of this advice. (﻿Freudenthal, 1973, p. 46, 
emphasis added)

﻿Piaget (1970) did acknowledge the emergence of ﻿category theory as a 
systemic reformulation, but without suggesting how that affected his 
correspondence hypothesis. 

Another mathematician who tangled with ﻿Piaget was René ﻿Thom, 
a topologist known for his development of catastrophe theory. In 
particular, ﻿Thom argued that ﻿Piaget’s position on ﻿geometry was gravely 
wrong, as did ﻿Freudenthal: ‘it is a serious mistake if, to justify a particular 
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kind of didactics, people tell you ﻿Piaget proved ﻿Euclidean ﻿geometry to 
start psychologically with Cartesian coordinates’ (1973, p. 669).

To close, a particular issue that has puzzled me for nearly forty years 
is the ontological status of ‘cognitive structures’ as something that a 
child ‘has’ (Jeeves & Greer, 1983, pp. 65–69). In those pages, we used 
a lengthy quotation from ﻿Feldman and ﻿Toulmin (1976, p. 426), which 
seems to go to the heart of the issue: 

Nowhere, it seems, are the differences between the problems involved 
in formally representing a theory and the problems in empirically 
﻿testing it so difficult to keep separate as in the area of cognition. Just 
because the theoretical system in question can plausibly be represented 
as corresponding to some mental system in the mind of an actual child, 
we may be led to conclude that the ﻿formalism of the theoretical system 
must be directly represented by an isomorphic ﻿formalism in the mind of 
the child… In this way, ontological reality is assigned to the hypothetical 
mental structures of the theory simply on the basis of the formal 
expressions by which they are represented in the theory.

 Guided reinvention, applied phylogeny

Children should repeat the learning process of mankind, not as it factually 
took place but rather as it would have done if people in the past had known a 

bit more of what we know now. (﻿Freudenthal, 1991, p. 48)

The qualification within the statement is crucial; ﻿Freudenthal’s vision 
of reinvention was with strategic instruction, guided by what Kaput 
(1994, p. 83) termed ‘applied phylogeny’. ﻿Kaput introduced this term 
with appropriate warnings about the cognitive appeal of ‘ontogeny 
recapitulates phylogeny’ including ‘the differences between a collective 
historical enterprise and an individual’s learning’ and ‘the irregularity 
of historical developments’. To use an obvious example, nobody would 
suggest that children should be taught the Roman way of labelling 
natural numbers before the decimal system. 

By way of example of ‘repeating the learning process of mankind’, 
consider multiplication and division of positive real numbers. In ancient 
Mesopotamia (as extensively documented by ﻿Høyrup) and in Peru 
(Urton, 1997), for example, the operations were linked polysemously to 
cultural practices. For the Quechua of Peru, multiplication and procreation 
were closely connected (and remember that, in the Bible, people are told 
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to ‘go forth and multiply’). To put it another way, multiplication and 
division can be used to model many classes of situation. In particular, 
there is a marked contrast between ‘asymmetrical’ situations – in which 
the quantities multiplied are clearly distinguishable as multiplicand and 
multiplier – and ‘symmetrical’ situations, such as rectangular area, in 
which they play equivalent roles. As a consequence, in the former case, 
there are two distinct forms of division, but not in the latter (Greer, 1992).

Contrast the above with the formal treatment of the operations. 
From a ﻿Bourbakian perspective, they are applied in decontextualised 
computation and organised within groups and other disembedded 
structures. In schools, arguably a great deal too much emphasis is on 
computation and formal properties such as commutativity, treated 
abstractly and not in relation to situations modelled, within which 
its nature varies greatly – sometimes addition and multiplication are 
trivially commutative, sometimes not. Similar comments apply to the 
statements that addition and subtraction, multiplication and division 
are inverse operations. 

The contrast between an abstract structure, such as a group, and 
diverse instances of it, such as transformation groups in ﻿geometry, was 
characterised by ﻿Freudenthal (1991, p. 20) in terms of ‘rich’ and ‘poor’ 
structures. Groups, historically, were encountered as rich structures in 
multiple different contexts and only axiomatised relatively recently. In 
﻿Freudenthal’s vision for teaching mathematics, the axiomatisation should 
come as the culmination of a long process – starting with the axioms 
or the poor/pure structure was, in his view, a gross pedagogical error, 
a ‘didactical inversion’. Thus (p. 29) ‘the didactically recommendable 
direction will be the same as that in which mathematics arises, that is, 
from rich to poor’. 

In ﻿Freudenthal’s vision, also, he emphasised changing the view of 
mathematics learning as accumulating content and ‘neatly tailored 
abilites, the mastery of which can be tested “objectively” (as they call 
it) – that is, by ﻿computers’ (1991, p. 49) to experiencing important 
mathematical activities: 

The learner should reinvent mathematising rather than mathematics; 
abstracting rather than abstractions; schematising rather than schemes; 
formalising rather than formulas; algorithmising rather than ﻿algorithms; 
verbalising rather than language… 
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﻿Cajori (1898) wrote that: ‘The ﻿history of mathematics may be instructive 
as well as agreeable; it may not only remind us of what we have, but 
also teach us how to increase our store’. Citing Augustus ﻿De Morgan, 
he continued: ‘The early history of the mind of men with regard to 
mathematics leads us to point out our own errors; and in this respect 
it is well to pay attention to the ﻿history of mathematics’. This principle 
lies at the heart of ﻿Kaput’s notion of applied phenology. Painstaking 
research in the historical record can identify cognitive obstacles and the 
ways in which they were, often after considerable time, resolved. That 
can then guide the teaching of children, in line with the quotation at the 
start of this section.

Material representations

A class in ﻿arithmetic […] will find it astonishing that it should have taken so 
long to invent a notation which they themselves can now learn in a month. 

(﻿Cajori, 1928, p. 3)

The importance of ﻿representations in the growth of mathematics 
historically is discussed in Chapter 2. There are, of course, huge 
differences between, on the one hand, the invention by mathematicians 
of ﻿representations in the service of the mathematics symbiotically being 
created and ﻿systematised, and, on the other, the presentation to children 
of evolutionarily stable ﻿representations. Is it any wonder that the 
presentation of the products of such long-drawn-out efforts as off-the-
shelf resources for children to use is rife with complications? For example, 
mathematicians are prone to regard the graphical ﻿representations of 
functions in the Cartesian plane as perspicuous, yet a mass of empirical 
evidence exists to show that misinterpretations are extremely common 
and difficult to dislodge.

In passing, a point that is obvious to anyone reading ﻿Cajori’s (1928) 
painstaking survey is that mathematical vocabulary, notations, and 
representational conventions are created very arbitrarily (an example 
being the conventional use in ﻿algebra of a, b, c as parameters and x, y, z 
as variables). Why do children (in English, as in many other European 
languages, but not German) have to deal with ‘isosceles’ rather than 
the Anglo-Saxon ‘twesided’ used by Robert Recorde in the sixteenth 
century (﻿Cajori, 1922)? For a discipline whose exponents pride 
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themselves on their rationality, the ﻿representations used in mathematics 
are surprisingly user-unfriendly. 

One way in which design has been prominent is in the conscious 
development of material teaching/learning resources termed 
‘manipulatives’. The earlier history of these in (some parts of) European 
mathematics education is well covered in De ﻿Bock and ﻿Vanpaemel (2019). 
Reflecting a distinction that is very clear for ﻿computer ﻿representations 
(Kaput, 1992), these are representational resources which children can 
use for recording, but also for acting upon. For teaching ﻿arithmetic, 
examples include Cuisenaire rods and the multibase ﻿arithmetic blocks 
designed by Zoltán ﻿Dienes.

The prominence of manipulatives has declined. One reason is that 
their pedagogical effectiveness has been called into question. Rather like 
the problems in trying to turn ﻿Pólya’s heuristics into classroom gold the 
issue is that you cannot understand how to exploit a heuristic such as 
‘think of a related problem’ unless you know a great deal already about 
what a related problem looks like. Likewise, those who can understand 
how a manipulative relates to the mathematics it is designed to illuminate 
have little need for the manipulative. Conversely, manipulatives may be 
of limited effectiveness for those who do not understand the connections 
(like the child who told Kath Hart that ‘bricks is bricks and sums is 
sums’). With respect to the multibase ﻿arithmetic blocks:

Children who already understood base and place value, even if only 
intuitively, could see the connections between written numerals and these 
blocks […] But children who could not do these problems without the 
blocks didn’t have a clue about how to do them with the blocks […] They 
found the blocks […] as disconnected from realty, mysterious, arbitrary, 
and capricious as the numbers that these blocks were supposed to bring 
to life. (Holt, 1982, pp. 281–219)

New representational windows

[…] information technology will have its greatest impact in transforming the 
meaning of what it means to learn and use mathematics by providing access 

to new forms of ﻿representation as well as providing simultaneous access to 
multiple, linked ﻿representations. (﻿Kaput, 1986, p. 1)
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I seem to remember Benoit ﻿Mandelbrot, speaking in 1992 saying that 
‘the ﻿computer has put the eye back in mathematics’. In evolutionary 
perspective, the ﻿computer age represents a new epoch in the creation 
of representational resources, with consequent massive implications for 
cognition (Kaput & Shaffer, 2002). Examples follow.

One of the first such revolutionary visions exploiting developments 
in information technology (IT) was the language ﻿Logo, designed by 
Seymour ﻿Papert. It rivals the ﻿Turing machine in terms of the simplicity 
of its primitives. Inspired by the young ﻿Papert’s fascination with gears, 
the basic mechanism (literally embodied in drawing machines called 
‘turtles’ which drew geometrical configurations controlled by the 
language) was an axle with equally sized wheels on the ends, which 
turn at the same speed either in the same direction, thus moving the 
turtle forward a stipulated distance, or in opposite directions, rotating 
it through a stipulated angle. The second element in generativity is the 
programming language in which the user can define and name routines; 
the names are then appended to the language. ﻿Logo produced a way of 
conceiving planar ﻿geometry very differently from ﻿Euclidean ﻿geometry. 
A circle, for example, is approximated to any desired degree of precision, 
as a regular polygon.

Another geometrical system, more closely linked with traditional 
﻿geometry is ﻿Geometric Supposer (GS) (see also Cabri, and 3-D 
versions). Within GS, constructions can be defined similar to those of 
﻿Euclidean ﻿geometry and recorded as procedures rather than drawings. 
The theorem that if you construct any quadrilateral and join the 
midpoints of the four sides you get a parallelogram takes on a different 
feel when you can grab it by a vertex and make the whole construction 
waltz on the screen. Among many other wonderful creations may 
be mentioned Fathom, which affords exploration of ﻿probability and 
statistical ﻿modelling.

﻿Kaput himself designed ﻿SimCalc and other software as resources 
for teaching ﻿calculus exploiting the kinds of features that he analysed 
(Kaput, 1992). And ﻿STELLA makes dynamic system modelling 
accessible to high school students (Fisher, 2021). 

Reading such work in the 1990s, a reader might well have thought: 
‘Just think what they’ll be able to do in schools thirty years from now’. 
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They would be greatly disappointed. There are many reasons for 
this, some of which are to do with the IT industry seeing more profit 
in other kinds of product than in tackling the complexity of teaching 
mathematics. Another major reason is the failure to grasp the need for 
﻿teacher training and to provide the necessary support. For example, 
﻿Papert’s vision of ﻿Logo as a mathematical world in which children could 
learn by themselves was arguably overoptimistic, and it progressively 
became clear that its effectiveness could only be realised under the 
guidance of skilled teaching. 

A historical example: Directed numbers

3 – 8 is an impossibility, it requires you to take from 3 more than there is in 3, 
which is absurd. (﻿De Morgan, 1810/1931)

Minus times minus makes a plus. 
The reason for this we need not discuss. (Attributed to W. H. ﻿Auden)

The case of directed numbers may be taken as paradigmatic for 
considering how a study of the ﻿history of mathematics might inform 
contemporary teaching. ﻿De Morgan was an eminent mathematician but 
balked at an arithmetical expression that quite young children today are 
expected to take in their stride. He was right if the only interpretation 
of n – m (where n and m are whole numbers) is the removal (in some 
sense) of m countable entities from a set of n. (And he did acknowledge 
the ﻿algebraic interpretation of n – m when m > n.) 

It could be argued that there is a fundamental epistemic shift 
illustrated here, from n – m as a direct ﻿representation of a situation 
(taking objects away from a set of objects) to n – m as a mathematical 
expression that can be used to model many situations – such as bank 
balances (did ﻿De Morgan never get into debt?) or scales with a zero 
such as those for measuring temperature or altitude relative to sea level. 
(When children later are being taught multidigit subtraction, e.g. 43–18, 
the ﻿teacher may say something like ‘you can’t take 8 from 3, so you 
borrow 10 and take 8 from 13’). From a purely structural point of view, 
the expansion of the positive whole numbers to all integers means that 
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subtraction is closed over the set of whole numbers, which form a group 
under addition, with ﻿identity element 0.

Ademio ﻿Damazio (2001, p. 209), on the basis of classroom 
observations of children being taught about directed integers, concluded 
that ‘the students did not overcome the concept of number as an ability 
to count concrete objects instead of as abstract objects that can be 
operated independently’. Well, why would you expect them to achieve 
such a feat over a series of twenty class lessons, what ﻿De Morgan, after a 
full mathematical education and career, failed to achieve? But try telling 
that to ﻿curriculum developers!

On the basis of observations of a ﻿teacher, Damazio (2001, p. 208) 
commented that ‘the ﻿teacher ceases to evidence relevant aspects for 
concept formation. You can do that if you are concentrating on calculative 
fluency alone. In particular, the notion of a relative zero (as a reference 
point) as opposed to that of absolute zero […] is the foundation of the 
concept of relative whole numbers’.

The case of multiplying and dividing negative numbers is much more 
complex than addition and subtraction and took even longer to resolve 
to the satisfaction of rigour-demanding European mathematicians 
(with false starts over centuries along the way, and eventual survival of 
what works). Within this context, the shift to modelling﻿ is even clearer. 
How can the plausibility of the rule ﻿Auden was told not to discuss (see 
above) be communicated to a child? There are a number of general 
approaches:

•	 Patterns. A two-dimensional table can be constructed with 0, 1, 
2, 3, … along each axis and the products in the body of the table. 
Extending back along each axis to –1, –2, –3, … and following 
the patterns makes the rules for multiplying directed numbers 
at least somewhat plausible (for an excellent discussion, see 
Sawyer, 1964, pp. 297–300) and a similar exercise can be 
carried out graphically (pp. 300–309). (Such patterns could 
be thought of as ‘localised structures’, partial reflections of the 
structures of ﻿Bourbaki and the like.)

•	 Modelling linear change over time. Suppose you are walking on 
steps at a constant rate of n steps per minute, not up (+n), 
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but down (–n). Then t minutes earlier (–t) you were nt steps 
higher than you are now.

•	 The ﻿algebraic/geometrical approach of the Babylonians. Consider 
the expression (x – a)(y – b). It is straightforward if x > a and y 
> b and easily verified through examples that its expansion as 
xy + x(–b) + (–a)y + (–a)(–b) ‘works’ if interpreted as xy – xb 
– ay + ab. And there is a geometrical counterpart.

•	 In Greer (2005), I cited a hilarious formal ‘﻿proof’ written by 
mathematicians for sixth-grade students and I cannot resist 
reproducing the start of it here: 

First, if a number a satisfies b + a = 0; then a is –b. That is how (–b) is 
defined, as the additive inverse of b. Second, N × 0 = 0 for any number 
N because the area of a rectangle with one side zero is zero […] Third:

0 =(–1) × 0 = (–1) × (1 + (–1) = (–1) × (1) + (–1) × (–1) 
(California Department of Education, 2000, p. 144)

	 (How I like mathematicians to speak of ‘a rectangle with one 	
	 side zero’!).

•	 A student’s pragmatism. I asked students in a general college 
mathematics class to (a) say if they believed (–1) x (–1) = 
+1 and (b) explain why. The answers were, as you might 
expect, mainly appeals to authority of some kind. However 
one student wrote that he believed it because every time he 
had operated according to that belief in a test he had gained 
marks, and conversely.

I would be prepared to argue for what would generally be considered 
a radical solution, namely to postpone treatment of multiplication and 
division of directed numbers until college, at which point it could be 
treated with the formal and informal thoroughness it warrants with 
students who have more relevant experience. I can cite one prominent 
mathematician who wrote that ‘the multiplication of negative numbers 
(like the addition of ﻿fractions) can and should be postponed’ (Hilton, 
1984, p. 8). Whenever it is introduced, it damned well ought to be 
discussed.
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What is mathematics education for?

Introduction

Mathematics as an aim in itself […] is an important aspect, although of less 
concern to us here, since our subject of mathematics education embraces a 

much larger group than only future professionals of whom once again only a 
small minority choose mathematics in itself. (﻿Freudenthal, 1991, p. 3)

In the above quotation, ﻿Freudenthal expresses clearly a theme that is 
omnipresent in the following discussion. Think of a pyramid representing 
the population of those who spend a lot of time in mathematics classes at 
school – in most of the world, essentially everyone. A very small section 
at the top then corresponds to those who will constitute the next cadre 
of mathematics researchers and tertiary level ﻿teachers of mathematics. A 
larger section below that represents those who use significant amounts of 
mathematics in their work – scientists, engineers, (some kinds of) social 
scientists and, generally, certain specialists within most fields (though 
there is considerable research showing that architects, for example, may 
use little of the formal mathematics of which they have been required 
to show mastery (Hacker, 2016)). The remaining bulk of the pyramid 
represents everyone else. Quite simply put, the thrust of this section of 
the chapter is to argue that the pyramid should be inverted, so to speak, 
so that school mathematics much more deliberately reflects the needs 
of the majority; to put it provocatively, school mathematics education is 
too important to leave to mathematicians who are primarily invested in 
perpetuation of their subspecies.

As a start, I pick up on earlier discussion of how formal mathematics 
influences ﻿curriculum, a particular case being the impact of ﻿Bourbaki. 
While the overt influence of ﻿Bourbaki has waned, its ghost still haunts 
mathematics classrooms (along with those of its extended family) in 
terms of premature formalisation. The ﻿Common Core State Standards 
used in the United States may be taken as a representative contemporary 
﻿curricular design in terms of content that could be termed ‘﻿Bourbaki light’ 
– a framework based on progressive mathematical structuration with 
premature formalisation rather than pedagogical and developmental 
considerations, and with scant attention to long-term pre-emptive 
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planning or to the critical points at which conceptual change must be 
carefully nurtured.

Accordingly, a counter-position is presented whereby ﻿curricular 
design is fundamentally respectful of the child’s capacity for 
understanding and accumulated experience at any point. The first point 
to be made is that given the vast amount of recorded and ﻿systematised 
mathematics, the selection problem (already mentioned in relation 
to ﻿Bourbaki) rears its head. In the face of what might be considered 
the (somewhat) reasonably reactionary nature of ﻿curricula, a number 
of radical alternative design principles are proposed, in particular 
aimed at making school mathematics useful to the adults that students 
become, rather than being a preparation for a small elite. As part of that 
argument, I contend below for substantial reductions in the level of 
formalisation of content and framing (which would also help ﻿teachers). 
These proposals are also linked with the proposal to move the centre 
of gravity, substantially, away from technical mastery and towards 
understanding – which, it is argued, would benefit also the elite who 
become advanced students of mathematics (and, again, ﻿teachers).

Given the degree to which mathematics formats our lives (to use 
Skovsmose’s term), those who frame school mathematics now have a 
responsibility to include instruction about ﻿modelling, its purposes, 
and its limitations. These aspects arise sharply, and very early on in 
elementary school, in the context of ‘the bizarre genre of ﻿word problems’, 
a locus within which quite young children could be taught to distinguish 
between modelling that is precise, modelling that is a more or less good 
approximation, and modelling that is plain wrong.

All of these considerations build to the argument that the relationships 
between mathematics and the social sciences be re-examined (see 
Chapter 9, this volume). Particularly important aspects include:

•	 The nature and purposes of mathematical ﻿modelling.

•	 Talking with students about mathematics, what it is for, how 
it is taught/learnt, the cognitive obstacles, its history, and its 
political ramifications.

•	 Mathematics in relation to aspects of life important to the 
students, their families and communities.
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Premature formalisation

The influence of ﻿Bourbaki on mathematics and mathematics education 
in the twentieth century is discussed in Chapter 2. While the overt 
influence of ﻿Bourbaki and other formally-intensive statements by 
mathematicians has waned, its lingering influence can be seen in the 
perseverance of premature formalisation. 

By way of an example, the ﻿Common Core State Standards for 
Mathematics (﻿CCSSM) developed in the United States may be taken as 
a reasonably representative ﻿curricular framework in terms of specifying 
mathematical content. It is critically flawed in many ways, in particular 
in its failure to offer pedagogical guidance. In his masterly comparative 
analysis of national ﻿curricula in fourteen countries, Geoffrey ﻿Howson 
(1994, p. 26) made the crystal-clear point that ‘a ﻿curriculum cannot be 
considered in isolation from the teaching force which must implement 
it’. I argue below that the dominance of mathematicians in its framing 
illustrates the harmful effects that mathematicians can have on school 
mathematics education. 

Unlike some manifestations of ﻿New Math of the 1960s (which I 
remember living through), ﻿set theory is not proposed as the starting 
point for children’s learning of mathematics, thus avoiding the 
absurdity of confusing the foundations of mathematics education 
with the foundations of mathematics as traditionally presented by 
philosophers; nevertheless, premature formalisation is pervasive. 
The ghost of ﻿behaviourism lurks, in that the framework is very much 
presented in terms of an incremental progression on a superficial 
metric of complexity, logical in the sense of the adult mathematician’s 
retrospection, not in terms of children’s ability to understand.

As an example, consider the extension of multiplication and division 
beyond the natural numbers. This is what we read:

Apply and extend previous understandings of multiplication and 
division to divide ﻿fractions by ﻿fractions.

Interpret and compute quotients of ﻿fractions, and solve ﻿word 
problems involving division of ﻿fractions by ﻿fractions, e.g. by using visual 
﻿fraction models and equations to represent the problem. For example, 
create a story context for (2/3) ÷ (3/4) and use a visual ﻿fraction model 
to show the quotient; use the relationship between multiplication and 
division to explain that (2/3) ÷ (3/4) = 8/9 because 3/4 of 8/9 is 2/3. (In 
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general, (a/b) ÷ (c/d) = ad/bc. How much chocolate will each person get 
if 3 people share ½ lb. of chocolate equally? How many ¾-cup servings 
are in 2/3 of a cup of yogurt? How wide is a rectangular strip of land 
with length ¾ mi and area ½ square mi? (﻿CCSSM, p. 42, for Grade 6)

If you are not laughing, you have not been paying attention. It is hard 
to expunge the image of someone embarrassedly saying to a guest ‘I 
am so sorry, I can only offer you 8/9 of a serving of yoghurt’. Another 
compelling image is of the unfortunate person tasked with devising a 
believable story to go with (2/3) ÷ (3/4) = 8/9 for a sixth grader.

Indeed, the ways in which ﻿fractions are treated are indicative of the 
problems I am trying to elucidate. Here are some of the issues:

•	 Essentially nobody apart from children in school needs to 
compute something like 4/7 + 5/11. People like carpenters 
and engineers, who make things that work, use decimals 
or binary fractions. What would be lost by following their 
example, restricting instruction to the few fractions and uses of 
fractions that people generally find useful (as approximations, 
for example)? The loss for formalists would be the lack of 
the formal closure of the positive rationals under the four 
arithmetical operations.

•	 Not unrelated is the common observation that ﻿fractions often 
constitute the first wall of incomprehension in mathematics 
class. A Peanuts cartoon depicts a young child responding 
to her teacher’s enquiry ‘Do you have any questions (about 
fractions)?’ by asking ‘Do you hate us?’.1

•	 Typically, mathematics educators see ﻿fractions as having 
multiple aspects, embedded in the complex conceptual field 
of multiplicative structures (Vergnaud, 2009). On the other 
hand, Hung-His Wu (1999) objects to this position on various 
grounds, appealing to the mathematician’s dogma that 
mathematics is formal, abstract, simple, precisely defined. 
For example, the student is expected to ‘understand a rational 
number as a point on the number line’ (CCSSM, p. 43). How can 

1� See Charles Schulz (November 7, 1991), GoComics, www.gocomics.com/
peanuts/1991/11/07

http://www.gocomics.com/peanuts/1991/11/07
http://www.gocomics.com/peanuts/1991/11/07
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a number be a point? A full treatment of Wu’s position would 
require a book (which I may yet write). Mathematicians tend 
to approach fractions in terms of computational properties 
and embeddedness in formal structures, such as groups, and 
to try to project that perspective onto learners.

﻿CCSSM (pp. 6–8) has a very short section on ‘Standards for mathematical 
practice’ namely:

1.	 Make sense of problems and persevere in solving them

2.	 Reason abstractly and quantitatively

3.	 Construct viable arguments and critique the reasoning of others

4.	 Model with mathematics

5.	 Use appropriate tools strategically

6.	 Attend to precision

7.	 Look for and make use of structure

8.	 Look for and express regularity in repeated reasoning

Together with a brief characterisation of each, with examples. As such, 
this is a fine list, but the ﻿teachers who plunge into ﻿CCSSM expecting 
enlightenment on how to cultivate such practices in their classrooms 
will find little. In particular, I find the treatment of Modelling﻿ (Standard 
4) decidedly undernuanced and overly limited to a straightforward 
encoding of a described situation into a precise mathematical 
formulation. 

Arguably, premature formalisation represents the most pervasive 
and harmful influence from mathematicians on mathematics-as-school-
subject. For the sake of making an argument, let me list positions that 
can be found in the writings of mathematicians (sometimes bordering 
on caricature):

•	 The attitude that if you define everything with precision, build 
everything up logically, step by step, and they still don’t get it, 
it’s their fault.

•	 Mathematics-as-school-subject exists primarily for the 
preparation of the next cadre of research mathematicians. 
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Schools should teach a great deal of ﻿calculus, in particular, 
so that university mathematics instruction can hit the ground 
running. 

•	 In lamenting what he perceives as a schism between 
mathematicians and mathematics educators, Michael ﻿Fried 
(2014, p. 4) expressed nostalgia for the time when ‘asking 
about the distinction between mathematics and mathematics 
education would have been like asking about the distinction 
between mathematics and ﻿geometry’. 

•	 In addressing the mathematical education of children, 
mathematicians tend to project their own images (or ‘pictures’, 
see ﻿Freudenthal, 1991, p. 131) of mathematics onto children.

Overall, it can be argued that mathematicians (of course, with many 
exceptions, have had harmful effects in multiple ways: 

•	 Perpetuation of the Graecocentric narrative of the history of 
academic mathematics through a combination of laziness and 
ideology. In my opinion a line can be drawn between this and 
the manifestations of ﻿racism in contemporary classrooms.

•	 Denigration of the mathematical practices of those who make 
things that work (Chapter 17, this volume).

•	 A tendency to assume that being good at mathematics is not 
only a necessary but also a sufficient condition for being good 
at teaching mathematics.

•	 ﻿Alienation from, and perceived irrelevance of, mathematics 
combined with a propensity for intimidation. 

•	 Failure to sew the seeds of criticality and ﻿agency in future 
citizens.

•	 Misuses of mathematics in the service of states.

As mentioned above, throughout history there have been exceptions. I 
will mention some personal heroes. Ubiratan ﻿D’Ambrosio brought to 
our field the necessary radically different kind of thinking that began to 
liberate ﻿Eurocentric ﻿anthropology and psyschology from their imperial 
and ﻿colonialist roots. The influences of Hans ﻿Freudenthal and Jim ﻿Kaput 
on my thinking must be obvious in this chapter. (I vividly remember 
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the latter commenting on a paper and drawing on the blackboard 
a large, amorphous creature, representing mathematics education. 
He then meticulously drew one toenail and commented ‘We spend 
too much time analysing toenails on the creature when we should 
be analysing the creature’.) Reuben ﻿Hersh was one of the leaders in 
a radical reformulation of what philosophy of mathematics might be 
about, communicated accessibly what mathematicians do when they do 
mathematics, and illuminated the pervasive ﻿diversity within academic 
mathematics. Alan Schoenfeld, and his career, speak for themselves in 
his chapter in this volume.

Rethinking curriculum

Here I am using ﻿curriculum in the sense of a plan for the contents and 
sequencing of school mathematics. As a starting-point, remember the 
metaphor of inverting the pyramid, introduced above. Taking that 
position has heavy implications for content. Above all, combined with a 
shift in the centre of gravity from mere competence to understanding and 
﻿problem solving, and attention to premature ﻿formalism, there could be 
a drastic reduction in the amount of ‘technical’ mathematics, including, 
as argued above, work with ﻿fractions and multiplying negative numbers 
(Hilton, 1984). Of course, there are protests against such a position. One 
such argument, that I find ill-founded, is that it hurts those children 
who are mathematically gifted. By way of counterarguments, I would 
characterise such giftedness as partly a cultural construct heavily loaded 
with connotations of cultural capital and that, in these days when 
masterclasses can be put online, enrichment is easily provided for those 
children who should (in whatever sense) have it (with careful provision 
to ensure such facilities are equitably accessible). As for students arriving 
at university with less technical knowledge under their belts, maybe the 
university ﻿teachers need to up their game. And, bearing in mind the 
adage that if you have four hours to chop wood, you should spend the 
first two hours sharpening the axe, if they arrive better able to ‘think 
mathematically’ (and enjoying mathematics rather than, at best, being 
rewarded by competence) that may be more than ample compensation.

As argued at various points, and see further below, in modern 
times mathematical modelling﻿ needs to be taken seriously, with a lot 
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more attention to the socially and politically situated processes of 
assumption-making, simplification, mathematisation, interpretation, 
and communication of results. The historical alignment of mathematics 
with the physical sciences is discussed in Chapter 8, together with 
suggestions that this traditional alignment be reconsidered. The 
extension of mathematical modelling to social phenomena is reflected 
in the prominence of the use of mathematical techniques in social 
sciences such as experimental ﻿psychology (emphasis on measurement, 
psychometrics, and ﻿statistics).

Then there are what I think of as the rights of the child. As far as 
cognition goes, foremost of these is the right to sense-making. As far as 
﻿identity goes, there are cultural rights, including access to an accurate 
(as far as possible) and balanced history of the development of academic 
mathematics, as well as an appreciation of the ‘funds of knowledge’, 
which is ‘based on a simple premise: People are competent, they have 
knowledge, and their life experiences have given them that knowledge’ 
(Gonzalez, Moll, & Amanti, 2005, p. ix). And then there are the multiple 
aspects of equitable treatment, educationally and personally. 

Curriculum developers, in my opinion, can show a remarkable 
ability to fail to learn from history; this reflects, and partly explains, the 
stultifying inertia that characterises school mathematics, the slowness 
to embrace new content and resources. Lessons from the failure of the 
variety of attempts made under the banner of ﻿New Math have not been 
sufficiently absorbed. Paralleling trends in assessment﻿, ﻿curriculum 
designers appear increasingly to benchmark against productions in other 
countries. This can lead to the error of importing a particular resource 
without the cultural embedding that makes it effective in its original 
milieu. It also encourages convergence (almost in a mathematical sense) 
with consequent implications for ﻿homogenisation.

If we look back as recently as the 1990s, at that time there were 
significant advances in assessment, even to the point of creating 
optimism (see review in De Corte, Greer, & Verschaffel, 1996, pp. 530–
534). That has largely disappeared – by way of example, one only has to 
look at the fate of ﻿Smarter Balanced Assessment Consortium as narrated 
by Schoenfeld (Chapter 14, this volume). In a similar way, as described 
above, the potential of ﻿computers as reviewed by ﻿Kaput (1992) has yet 
to be adequately realised in classrooms.
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And there are what might be called emotional rights. There is no 
reason why elementary mathematics instruction should not be an 
intellectual playground. There is no reason why mathematics ﻿teachers 
should tend to authoritarianism, but the subject certainly provides 
multiple opportunities for any such tendency. Mathematicians who 
love mathematics express sympathy for those who are ﻿alienated by it 
(or more accurately what they have been confronted with), but might 
spend more time thinking about whether they need to show intellectual 
empathy for the children who lack the facility with mathematics that 
they themselves typically enjoyed when young.

Teachers have rights, too, but that’s another story.

 Coherent long-term design

Calculus might be regarded as a web of ideas that should be approached 
gradually, from elementary school onward, in a longitudinally coherent school 

mathematics ﻿curriculum. (﻿Kaput, 1994, p. 78)

Kaput was talking specifically about ﻿calculus – which he suggests 
should be reconceptualised as ‘the mathematics of change’ (p. 152) and 
not necessarily built on the traditional foundation of ﻿algebra (pp. 77–78) 
– but the point applies equally to any major branch of mathematics. 
To give another example, instead of the framing ‘the transition from 
﻿arithmetic to ﻿algebra’, the inherently ﻿algebraic nature of ﻿arithmetic may 
be recognised, and there are plenty of pedagogical moves to do just 
that.	

Here I make what I see as vital points about ﻿curricular design being 
long-term, coherent, forward-looking, and mindful of conceptual 
obstacles and pedagogical dilemmas. At a very concrete level, a century 
ago, Edward ﻿Thorndike (1922) observed that children’s mathematical 
conceptualisations are significantly framed by the examples to which 
they are exposed. A narrow range can result in a narrow understanding. 

 The lingering effects of ﻿behaviourism in folk pedagogy include a 
belief in the obviousness of the principle of monotonic and incremental 
movement along a simple/complex dimension, and the short-termism 
engendered by the desire to maximise scores on the next test. Efraim 
﻿Fischbein pointed out the consequent dangers:
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From the educational point of view there is an important problem to be 
considered by ﻿curricula writers and by ﻿teachers. A certain interpretation 
of a concept or an operation may be initially very useful in the teaching 
process as a result of its intuitive qualities (concreteness, behavioral 
meaning etc.). But as a result of the primacy effect that first model may 
become so rigidly attached to the respective concept that it may become 
impossible to get rid of it later on. The initial model may become an 
obstacle which can hinder the passage to a higher-order interpretation – 
more general and more abstract – of the same concept. (Fischbein, 1987, 
p. 198)

A similar warning was expressed by ﻿De Morgan in relation to number 
and ﻿arithmetic:

If we could at once take the most general view of numbers, and give 
the beginner the extended notions which he may afterwards attain, the 
mathematics would present comparatively few impediments. But the 
constitution of our minds will not permit this. (﻿De Morgan, 1831/1910, p. 33, 
emphasis added)

Accordingly, it is essential to identify points at which conceptual 
change is difficult (and here history can be an indispensable guide) 
and then look for bridging resources. A clear example is the extension 
of multiplication and division beyond the positive integers to positive 
rational numbers, particularly those less than 1. The ramifications of 
this extension have been very extensively researched, in particular how 
‘multiplication makes bigger, division makes smaller’ is no longer valid 
(here ﻿Thorndike’s precept is particularly relevant). The consequent 
difficulties can be ameliorated, as discussed in Greer (1994), by pre-
emptively including examples of multiplication and division by numbers 
less than 1 as early as possible and by the use of bridging example sets 
and ﻿representations. The point was well made by ﻿Cajori (1898):

That, in the historical development, multiplication and division should 
have been considered primarily in connection with integers, is very 
natural. The same course must be adopted in teaching the young. First 
come the easy but restricted meanings of multiplication and division, 
applicable to whole numbers. In due time, the successful ﻿teacher causes 
students to see the necessity of modifying and broadening the meanings assigned 
to the terms. (p. 183, emphasis added)
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As an overarching principle, the above considerations should be 
discussed with students. ﻿Fischbein, for example, has recommended 
telling students about historical examples showing that conceptual 
change is difficult for mathematicians too.

Many other examples come to mind of the consequences of lack of 
forethought. To a mathematician, it is obvious that when performing 
calculations on numbers that are measures of quantities, e.g., multiplying 
speed by time to get distance, the operation is invariant in relation to the 
numbers; for a child this principle is very far from evident, as shown 
by considerable research. Again, to a mathematician, multiplication is 
commutative, but in certain contexts it isn’t, in the sense illustrated by 
the following example. To find the distance travelled by something at a 
constant speed of 0.75 miles per hour for 3 hours is instantly recognised 
as being found by multiplying the two numbers, but if it is 3 miles at 0.75 
miles per hour, not so (many children will say the answer can be found 
by dividing 3 by 0.75, plausibly because they realise that the answer 
will be less than 3 and ‘multiplication makes bigger, division makes 
smaller’).

 Modelling: From unreasonable effectiveness to reasonable 
ineffectiveness

The unreasonable effectiveness of mathematics. (Wigner, 1960, title) 

The reasonable ineffectiveness of research on mathematics education. 
(﻿Kilpatrick, 1981, title)

Eugene ﻿Wigner’s seminal article addressed the question of how it is 
possible, for example, to predict through mathematics the movements 
of celestial bodies. Jeremy ﻿Kilpatrick, in relation to mathematics 
education, pointed out that the answer to ‘How can we send a man to 
the moon, but cannot improve mathematics education?’ is that the first 
is, however complex, a technical problem, while the second is a human 
problem. A similar contrast is evident in moving from the modelling of 
physical phenomena to the modelling of phenomena involving humans. 
Further, given the pervasiveness of what Skovsmose has characterised 
and analysed for decades as the formatting of our lives through 
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mathematical modelling, it is important that the ﻿curriculum address the 
associated complexities.

The simple schematic for modelling in terms of mathematisation, 
development of implications, evaluation, and revision needs to be 
elaborated to include the following aspects:

•	 Considerations of who is doing the ﻿modelling and for what 
purpose; there is massive added complexity, particularly at the 
stages of mathematising the situation, including, in particular, 
what assumptions are made.

•	 Limitations imposed by technology and techniques available – 
these diminish with computing developments, but are still an 
issue for students.

•	 Evaluation of the outcomes of manipulating the model are 
also subject to the motivations of the modellers.

•	 Communication and dissemination of the results, especially 
some sense of their fragility (reasonable ineffectiveness); 
motivations of the modellers are also central at this point.

The foregoing considerations have massive implications for what 
should be taught – not just modelling in the sense of examples of 
how it is done, but questions of why. An extreme (in my view) 
counterargument was put, with admirable clarity, by André ﻿Toom 
(1999). His position was that, rather than viewing ﻿word problems as 
having anything to do with applications, the purpose of including 
such problems is simply to help teach ﻿pure mathematics and students 
to quickly learn the rules. The issue is pinpointed in the remarkable 
amount of discussion about the single equation 2 + 2 = 4. As Houman 
Harouni (see Chapter 12, this volume) outlines, this discussion can 
become very rarified; I find the explanation by Reuben ﻿Hersh (1997, 
p. 16) straightforward and convincing, that the equation has a double 
meaning, as a statement of ﻿arithmetic, and as a description of what 
happens when 2 stable entities are put together, without interaction, 
with 2 other stable entities. To elucidate slightly, 2 + 2 = 4 may afford a 
precise model – if I go to the bakery for donuts and my wife has said to 
get two for her, and two for myself, I could be in trouble if I come back 
with a number of donuts other than four. Or it could be totally wrong 
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as a model – if your doctor says you can drink 2 pints a night and a 
second opinion confirms that recommendation, that is not a licence to 
drink 4 pints a night.

In Verschaffel, Greer, and De Corte (2000), we argued that what are 
called ‘﻿word problems’ or, especially in the United States, ‘story problems’ 
could, indeed should, be treated as simple exercises in ﻿modelling. There 
is no reason why, through such problems, young children should not be 
introduced to the core insight that models may be exact, approximate, 
or plain wrong, and that it is possible to discriminate among those cases. 
Giyoo ﻿Hatano (1997) argued that the cost of increasing the demands 
on students by having them learn about complexities is too high; the 
position taken in this chapter that the cost of not doing so is also too high. 
In extension of this line of thinking, I would argue that mathematics 
education inculcates simplistic thinking. Children are taught the rules 
of the ﻿word problem game, foremost of which is that when you enter the 
mathematics classroom, you can ignore what you know about the real 
world and enter:

A strange world in which you can tell the age of the captain by counting 
the animals on his ship, where runners do not get tired, and where water 
gets hotter when you add it to other water. (Back cover of Verschaffel, 
Greer, van Dooren, & Mukhopadhyay, 2009)

Early school mathematics can be seen as foundational in establishing 
not just the beginnings of understanding and competence, but also 
epistemological biases beneath the surface of mathematical content and 
techniques, including, in particular:

•	 The implicit assumption that essentially anything can be 
measured on a single dimension, and therefore individuals 
and groups can be measured in terms of that variable. The 
case of IQ provides a particularly clear and consequential 
example.

•	 The idea that real-world situations can be ﻿modelled 
unproblematically in terms of mathematical structures and 
operations and that once numbers and models have been 
specified, they cannot be disputed. 
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It does not have to be like that

Many issues about the development of mathematics-as-discipline by 
humankind were raised in Chapter 2. Likewise, there are fundamental 
questions in considering mathematics-as-school-subject:

•	 What are the relationships between the development of 
mathematics by humanity over millennia and the growth of 
mathematical understanding in an individual? How can a 
child be expected to come to grips with conceptual networks 
that took the combined intellectual resources of humankind 
millennia to create? How can this challenge be addressed 
within constructed environments?

•	 Why is school mathematics so ﻿alienating, and unused/
unusable for so many (including highly intelligent people), 
problematic even for those who succeed, and loved by only a 
few (Hersh & John-Steiner, 2011)?

•	 Why do states/societies ask children to endure such stupidity?

•	 Why is systematic design, illuminated by study of the past, 
conspicuously lacking?

Above all, we should always return to the basic questions ‘What is 
mathematics education for?’. Why could it not be different, and in 
what ways? Some thirty years ago, I was asked to say briefly what I 
had learned about mathematics education. I responded: ‘For too many 
people, school mathematics is a personally and intellectually negative 
experience. It does not have to be like that’. That remains a good 
summary of how I feel. 
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