

https://www.openbookpublishers.com
©2024 Hart Cohen, Ujjwal Jana and Myra Gurney (eds)

Copyright of individual chapters is maintained by the chapter’s authors

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0
International (CC BY-NC 4.0). This license allows you to share, copy, distribute and
transmit the text; to adapt the text for non-commercial purposes of the text providing
attribution is made to the author (but not in any way that suggests that they endorse you
or your use of the work).

Attribution should include the following information:

Hart Cohen, Ujjwal Jana and Myra Gurney (eds), Digital Humanities in the India Rim:
Contemporary Scholarship in Australia and India. Cambridge, UK: Open Book Publishers,
2024, https://doi.org/10.11647/obp.0423

Further details about CC BY-NC licenses are available at https://creativecommons.org/
licenses/by-nc/4.0/

Copyright and permissions for the reuse of many of the images included in this publication
may differ from the above. This information is provided in the captions and in the list of
illustrations. Every effort has been made to identify and contact copyright holders and any
omission or error will be corrected if notification is made to the publisher.

All external links were active at the time of publication unless otherwise stated and have
been archived via the Internet Archive Wayback Machine at https://archive.org/web

Updated digital material and resources associated with this volume are available at
https://www.openbookpublishers.com/product/0423#resources

ISBN Paperback: 978-1-80511-387-4
ISBN Hardback: 978-1-80511-388-1
ISBN Digital (PDF): 978-1-80511-297-6
ISBN Digital eBook (EPUB): 978-1-80511-389-8
ISBN HTML: 978-1-80511-390-4
DOI: https://doi.org/10.11647/OBP.0423

Cover concept by Thalan-Harry Cowlishaw, designed using original image provided by
Freepic, https://www.freepik.com, CC BY-NC
Cover design by Jeevanjot Kaur Nagpal

https://www.openbookpublishers.com
https://doi.org/10.11647/obp.0423
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://archive.org/web
https://www.openbookpublishers.com/product/0423#resources
https://doi.org/10.11647/OBP.0423
https://www.freepik.com

13. Code against code: Creative coding as
research methodology

Cameron Edmond and Tomasz Bednarz

Abstract

Machine writing—where computing methods are used to
create texts—has risen in popularity recently, diversifying and
expanding. Machine writing itself could be seen as a subset of
the creative coding discipline. Emblematic of the contemporary
turn in machine writing is Darby Larson’s Irritant. Impenetrable
by traditional reading standards, the text is governed by code.
The reader of Irritant faces similar challenges to the Digital
Humanities scholar attempting to analyse large textual corpora.
As such, Irritant becomes a useful case study for experimenting
with reading methodologies.

We approach Irritant from a computational criticism
perspective, informed by the same creative coding methods
that spawned it. Our objective is to reverse engineer Irritant,
scraping its repetitions and variables using Python within a live
coding environment. We position creative coding as a research
methodology itself, especially suited for analysing machine-
written texts.

This chapter details our process of back-and-forth iteration
between the researcher and the text. The ‘hacking’ of the text
becomes critical practice itself: an engagement with the coded
artefact that meets it on even ground. What our analysis finds,
however, is more questions. Our exploration of Irritant fails

© 2024 Cameron Edmond and Tomasz Bednarz, CC BY-NC 4.0 � https://doi.org/10.11647/OBP.0423.13

https://doi.org/10.11647/OBP.0423.13

246� Digital Humanities in the India Rim

to unravel the novel’s code in the way we planned, but instead
reveals more thematic depth. Far from the post-mortem of a failed
experiment, this chapter presents creative coding as a research
methodology and interrogates its benefits and challenges via the
Irritant case study.

Keywords

Machine-writing; distant reading; graph theory; algorithmic
literature; creative coding.

Introduction

In something of red lived an irritant. Safe from the blue from the irr. And
this truck went in it. Safe. Something of red in it back to the blue to the
red. This truck and something extra (Larson, 2013, p. 1).

So begins Darby Larson’s monolithic text Irritant (2013). And so
it continues, winding through surreal, asemantic statements that
challenge reader comprehension. Irritant represents the creative coding
practice of machine writing, where computing methods are used to
create texts (Edmond, 2016, p. 4–5). As a textual practice, machine
writing has experienced renewed interest within both popular (Heflin,
2020) and academic discourse (Orekhob, 2020). A lingering question
of these interrogations is what methodologies are best suited for
analysing machine-written texts, especially those generated from
large textual corpora (Fullwood, 2014) or that are interactive (Walton,
2019). In this context, Larson’s Irritant is an interesting beast. Irritant’s
construction is far more simplistic, using simple generative and cut-
up methods akin to William S. Burroughs and the Dadaist movement
(Robinson, 2011, p. 1–20). However, the abrasive prose of Irritant defies
traditional reading standards. Rather than a traditional, temporal
narrative, Irritant treats the text of the novel more like a texture. A
single, monolithic paragraph is repeated, with each repetition featuring
slightly altered sentences with objects, characters and actions changed.
These actions are incremental, causing a slow rise and fall of these
entities and actions throughout.

Despite its form, one could take a linear approach to reading Irritant.
However, the veracity of such a reading is questionable. While the

� 24713. Code against code: Creative coding as research methodology

theme of relentless, linguistic oppression will be apparent, making
sense of anything else requires a more systemic approach, one that can
find the mutations within the sea of sameness. This observation leads
us to inquire as to whether the computational criticism of the Digital
Humanities (DH) can help us make sense of machine-written texts.

Analysis of machine-written texts has existed within fringe groups of
literary scholarship for some time. Attempts to unravel texts produced
via automation date back to at least the early 1980s, when computing
and tech journalism began to show interest in computational texts
(Edmond 2019, p. 37). However, recent years have seen an uptick in
the relevance of machine-written texts. Writing in 2023, the most recent
of these developments is the proliferation of Large Language Models
(LLMs) such as OpenAI’s ChatGPT, which some users have used to
generate novels (Coetzee, 2023). At present, it seems that this form
of Artificial Intelligence (AI) tool—one that produces text that bears
extreme similarity to that of the human—is only likely to become more
pervasive throughout our society.

Any grievances or jubilations about the world of Generative Pre-
trained Transformer (GPT) texts aside, as the textual possibilities
of AI continue to extend into new directions, it is important for us
to understand how we may ‘read’ a text that is truly machinic. The
productions of these LLMs are vastly different from Larson’s Irritant. A
foundational understanding of how one might speak to ‘code through
code’ is important for the DH researcher of the future, and we believe
doing so on the level of the machine—rather than when it is trying its
hardest to appear human—may be the best way to get there.

While many DH techniques and tools are developed for the
programmatic interrogation of texts at large, we are instead proposing a
close reading. Our approach is not without precedent, as evident in the
Z-Axis Tool that transposes literary works into 3D maps (Christie and
Tanigawa, 2016). However, the Z-Axis Tool is only useful to a reader who
knows what they are looking for—that is, the relevance of particular
locations. Arguably, the reader of Irritant is starting from a somewhat
less secure position, knowing only that the text they are stepping into is
literally (and literarily) inhuman. Consequently, our attention turns to
Jan-Hendrik Bakels et al.’s (2020) tool for computational visualisation/
annotation of films, which they refer to as a “systemic approach to
human experience” (par. 12). One of the solutions the team demonstrates

248� Digital Humanities in the India Rim

involves the creation of a timeline of the media in question, complete
with the audio visualised as a waveform. The resulting view is akin to
what a post-production professional would view when working on a
film, mimicking the process of creation and allowing the user to peer
‘behind the curtain’ of the artefact.

Following Bakels et al.’s (2020) lead, we approach Irritant with
a similar deconstructive approach in mind. As Larson’s text was
constructed through methods of creative coding, we will attempt to use
similar techniques to analyse the text. In doing so, we offer a case study
into the effectiveness of creative coding as a research methodology. Our
initial analysis set out to unravel the code of Irritant itself. However, as
we plunged deeper into the text, we were left with more questions. Our
analysis revealed to us new thematic avenues and possibilities, thereby
shedding light on both Irritant and how researchers may wield creative
coding to conduct research.

Our work is also aligned with several other DH practitioners currently
active in this field. John Mulligan’s ‘middle-distant’ form of reading has
recently examined the tensions that exist between numerical analysis
and literary theory and attempts to reconcile the two.

Furthermore, the twisting and deforming of text to divine further
meaning is a practice we are certainly not pioneering. Lisa Samuels
and Jerome McGann (1999) discussed the reading of a text “against
the work’s original grain” (Samuels & McGann, 1999, p. 28). While
discussing poetry, the pair suggest a new mode of critique: do not ask
what the poem means, but instead investigate how you can release and
expose this meaning.

Attempting to further pinpoint all the methods influencing
this practice would be a chapter in and of itself. Instead, we point
towards James E. Dobson’s (2019) overview of the landscape of DH
reading methods. Here, Dobson discusses the concept of “surface
reading”, and its relationship to approaching a text without a lens of
“superstition” that accompanies close reading. Indeed, many of the
practices we utilise emerge within such surface-reading approaches,
down to the use of Python and Jupyter Notebooks. However, we
approach our study with a far different intention. While a surface-
reading approach may suggest meaning sits within the text, awaiting
discovery, we instead recognise our programmatic reading as a sort
of close reading itself, but simply one through a different method. We

� 24913. Code against code: Creative coding as research methodology

have, to put it crudely, replaced our pens and margin notes with loops
and arrays. Our approach is deliberately inhuman, for what we are
reading is as well.

Finally, we must address that while our methodology encourages
the writing of code by the critic, our enquiries and practices may also
apply to other existing tools for those apprehensive about starting
programming themselves. Tools such as Voyant Tools and Omeka allow
the visualisation of formalist textual elements, as well as marking up
and annotating them. For those unsure where to begin, we suggest these
tools as a starting point along their journey.

Creative coding

Traditionally trained artists are increasingly interested in coding, as
is evident in the proliferation of tools designed to facilitate the field
of creative coding directly, such as Stamper (Burgess et al., 2020),
and texts written to introduce arts practitioners to coding (Montfort,
2016). However, there is an erroneous narrative that computational art
came about post-1980s. Artut (2017) states that it was only “a limited
group of engineers and scientists who became experts in computer
programming” (p. 2). While Artut’s (2017) statement that computing
was less accessible during the 1980s is true, it oversimplifies the use of
computation in artistic practice, which dates back to at least Christopher
Strachey’s Love Letter Generator (Wardrip-Fruin, 2005), and glosses
over the demoscene (Hansen et al., 2014), arguably a precursor to
contemporary creative coding.

Creative coding has been referred to as decidedly iterative and
reflective, likened to the painter who makes some expressions on the
canvas and then decides what to do next (Bergstrom and Lotto, 2015,
p. 26). Essentially, planning is reduced if not eliminated. Bergstrom and
Lotto (2015) extend this metaphor by describing “live coding” in which
individuals write code in front of an audience (pp. 26–27). The pair
also associate creative coding with hacking. Nikitina (2012) describes
hackers as the tricksters of the digital age, performing inventive, barrier-
crossing tasks that leverage systems in the search for creativity (pp.
133–135). Much like the trickster of mythology, the hacker manipulates
the systems around them to alter their environment. Their subversion
becomes their artistry. In keeping with these sentiments, our definition

250� Digital Humanities in the India Rim

of creative coding encompasses the need for the act to be an iterative
‘hacking’ away at the subject.

Without planning too far ahead, we do need to consider what we
wish to uncover from Irritant. Given its algorithmic form, the patterns
themselves are a good starting point. This leads us back to the techniques
that bore Irritant initially: textual manipulation. Our starting point, then,
is to try and unravel the repetitions and variables of Irritant. As we wish
to do so iteratively and reflectively, we will use a Jupyter Notebook. A
Jupyter Notebook is a live programming environment, that allows users
to write blocks of code and execute them as they go, creating a space for
exploratory and iterative programming (Project Jupyter). Notebooks
can be shared, so ours is available from http://hci.epicentreunsw.info/
creativecode.html. While we cannot upload our source material, by
making our code available, we hope to encourage readers to experiment
with the code in their analysis of other texts.

A note on the syntax and style of code used in this chapter. While
completed code is often re-factored to appear more beautiful, function
better and achieve more reliable results, our purpose here was to show
the live ‘hacking’ experience of attempting an enquiry, learning from
the result (or error message) and trying again. As such, while we stand
by the methodology presented here, we make no such claims about the
styling and formatting of the code. Please view the actual code presented
here as scribbles in the margins, rather than completed analysis.

Prep time

Machine writing texts such as Irritant are, in many ways, ‘hacks’ of
language and literary tradition. As illustrated in the yearly submissions
to NaNoGenMo (Kazemi, 2013), to practice machine writing is to play
with language. Although some scholars have studied Irritant (Sierra-
Paredes, 2017; Murphet, 2016) the question remains: how do we unravel
this enigma? What is the key to opening the monolith and discovering
the meaning within? We view it as a puzzle: a dense tome that challenges
the reader. We must follow the clues and construct the jigsaw piece by
piece, forming the picture as we go.

Larson is not the first to craft a puzzle for their reader in the form of
unconventional discourse. Life: A User’s Manual (1987) by Georges Perec
refers to itself as a jigsaw puzzle in its opening pages. Similarly, as the

http://hci.epicentreunsw.info/creativecode.html
http://hci.epicentreunsw.info/creativecode.html

� 25113. Code against code: Creative coding as research methodology

brain in Plus (2014) by Joseph McElroy relearns consciousness, the reader
is invited to piece together the story. However, McElroy and Perec both
give the reader more clues as they go. By sheer dint of perseverance, the
reader will find answers by the time they reach the final page. For the
reader of Irritant, there is no such certainty. Irritant ends much as it began:
the monolithic paragraph iterates a few more times and ends—almost
mockingly—with the statement “this is a showboat” (Larson, 2013, p. 623).

However, Larson has left clues for those trying to solve Irritant. In an
interview, Larson presented the code used to generate the short story
“Pigs”, in which a series of sentences slowly evolve, their original words
being replaced with a litany of other nouns, creating a textual unravelling
(Larson, “Pigs”). Larson then suggests that “similar” constraints were
used to create Irritant, stating the original idea as “a 70-word initial set
that slowly changes to a completely different 70-word final set with a
one-word change occurring every 4000 words. So, 4000 x 70 is 280,000
words total” (Butler & Larson, 2013). Larson cryptically continues:

Irritant ended up being quite less than 280k […] I wrote the first 4000 words
on my own, just stream of consciousness while referring to the word set.
Then I randomized that and concatenated it to the original (so now 8000
words) and did one-word substitution on the new 4000, and so on and so
on until all 70 words had been substituted (Butler & Larson, 2013).

From Larson’s statement, we can begin to unravel Irritant armed with
the following clues:

•	 The first 4000 words are completely humanly written.

•	 The second 4000 are randomised.

•	 There are 70 words that become substituted.

These points are useful, but also establish the difficulty of our task.
The core of Irritant being written by a human rather than a machine
throws it into a nether realm of study. A human-penned puzzle has
its pieces placed deliberately, ready to be solved. Further, a completely
machinic text would require only one cracking of the pattern to uncover
its workings. Irritant sits between the two worlds, guarded by both
humanity and machinery.

The first step, then, is to check the veracity of Larson’s claim.
According to the copy of the text we have, Irritant’s word count is
272,267. If an iteration occurs every 4000 words, and accounting for the

252� Digital Humanities in the India Rim

novel’s first 4000 words being ‘outside’ the equation and the next 4000
being iteration zero, we are left with 264,267 words (272,267 – 8,000).
Dividing this by 4000, we are left with 66.1, three (and change) words
shy of Larson’s claimed 70 iterations. We then must ask: did Larson begin
counting his iterations earlier? Did he use some sort of post-processing
to remove sections that weren’t interesting? And how do we account for
the stray 267 words, which based on initial sums do not fit nicely into our
calculations? Larson has likely both made a few tweaks in the editing
room and, perhaps, forgotten the exact number of iterations contained
in the book. Taking these two points as our preliminary hypothesis and
armed with a digestible version of the text ready to ‘hack’, we begin our
spelunk into the literary depths of Irritant.

Hacking Irritant

The text of this chapter is written to present our methodology in a way
that it can be reproduced. As such, we assume very little of our reader’s
knowledge of the Python language. However, if for no other reason
than chapter length, we will not be delving into how to install Python
or Jupyter Notebook. Thus, our process begins at the step of having
digested Irritant’s text into a .txt file and opened up a Python 3 Jupyter
Notebook to begin our excavation. We first import all necessary libraries
and then turn our .txt file into a single string.

import pandas as pd
import nltk
from nltk.stem.wordnet import WordNetLemmatizer as WL
from statistics import median
import matplotlib.pyplot as plt

with open ("irritantraw.txt", "r") as irr:
 irritant = irr.read()

We now have our subject in a raw, textual form for processing. There
are many starting points here. Given Larson’s discussion of word
permeation, we will first uncover exactly what words appear throughout
the text by creating a list of every unique word within it. We create a
version of Irritant that removes punctuation and capitalisation to make
it easier to split into words and avoid false positives. We then transform
this string into a list of all words in Irritant.

� 25313. Code against code: Creative coding as research methodology

punctuation = [".",",","?","!"]
irritant_np = irritant
for p in punctuation:
 irritant_np = irritant_np.replace(p,"")
irritant_np = irritant_np.lower()
irritantlist = irritant_np.split(" ")

This list will certainly include duplicates, so from here we generate our
new list of ‘prime’ words, which includes each word only once.

irritantwords = []
for word in irritantlist:
 if word not in irritantwords:
 irritantwords.append(word)
 print(word)

This gives us our list of every word within Irritant—a total of 478 unique
words. If we still believe Larson’s original claims, this leaves us with
(478-70*2=) 338 ‘generic’ words that do not evolve over the course of
the system. We can assume these words are most likely articles and
conjunctions, although we cannot prove this yet. Another step is to see
just how many times each word appears. Because we kept both lists, we
can compare them and retrieve the count of each unique word.

for word in irritantwords:
 count = irritant_np.count(word)
 print ("There are " + str(count) + " instances of '" +
word + "' in total.")

Although this method allows us to produce a plain, textual list of each word
and its frequency, a list of 478 words is only marginally more readable than
Irritant itself, and, on its own, it will not reveal much. It would be better
to visualise this data. First, we will need to place unique words and their
counts into a tabular dataset/dataframe. As we will be doing this a few
times, we will write a function to create our graph. After a run, it became
clear that visualising all 478 words was unwieldy, and it might be better to
begin with the top 50 and bottom 50 words, amalgamated in Figure 13.1.

254� Digital Humanities in the India Rim

Fig. 13.1 The top and bottom 50 words in Irritant, sorted by frequency.

� 25513. Code against code: Creative coding as research methodology

def visualise(uniquewords,fullcorpus):
 wordcount = []
 for word in uniquewords:
 count = fullcorpus.count(word)
 wordcount.append(count)
 df = pd.DataFrame({'word': uniquewords,'count':wordcount})
 dfsorted = df.sort_values(by='count', ascending = False).
head(50)
 dfsorted.plot.barh(x='word',y='count', figsize=(30,30),
fontsize=20)
 dfsorted = df.sort_values(by='count', ascending = False).
tail(50)
 dfsorted.plot.barh(x='word',y='count', figsize=(30,30),
fontsize=20)

visualise(irritantwords,irritantlist)

Looking at our top 50 words, it becomes abundantly clear that the
inclusion of our generic terms—especially “the” and “and”—is
obfuscating any insights. Our next step, then, is to shrink our list down
so we can examine only the evolving words. There are a handful of
ways we could do this. We could guess which words are generic, but we
will likely miss some, making this a time consuming and error-prone
method. We could comb through the text itself and find words, but
this would defeat the purpose of our hack-based reading methodology.
Most other solutions involve bringing in some sort of NLP library, in this
case, NLTK, that offers some intelligence as to how words hang together.

First, we will try using NLTK to analyse the text and find what words
are similar to one another. This should give us a good idea as to how the
patterns of the text hang together. We begin by tokenising our text to
make it readable to NLTK.

text = nltk.word_tokenize(irritant)
irritanttagged = nltk.pos_tag(text)
context = nltk.Text(word.lower() for word in text)

Through this method, we should receive a list of every word used in similar
settings to the eponymous “irritant”, one of the words we propose is evolving
throughout the text. We run the code “context.similar(‘irritant’)”, which
returns “woman porch water morning moon turq chair other evening man
sun balloon corner door kitchen artichoke weather flowerpot infant blue”.

256� Digital Humanities in the India Rim

This isn’t particularly insightful. While it does indicate we are on the right
track (nouns appear to be replaced by nouns), it is hardly a conclusive list.
Moreover, running the query on “the” (“context.similar(‘the’)”), yields a
few of the same words, such as “moon”.

While these results are discouraging, they do create some inroads into
Larson’s linguistic puzzle box. If “the” and “irritant” share similarities,
this implies that Larson’s pattern does not follow a traditional syntactical
pattern. So, we will now see if we can retrieve all nouns and verbs from
the text to map what structure does exist. NLTK can help us do this,
as it tokenises and tags words based on their lexical role. For instance,
conjunctions are tagged with “CC”, common nouns with “NN”, proper
nouns with “NNP”, etcetera. Following the creative coding mantra of
“leap before you look” (Greenberg et al., 2013, p. xxiii), we will begin
by creating a new list of all nouns, pronouns, adverbs and verbs. To
start, we first want to get a lead on what tags are present in the text, so
we don’t waste time having our code look for tags that don’t appear.

alltags = []
for word, tag in irritanttagged:
 if tag not in alltags:
 alltags.append(tag)
 print (tag)

An interesting observation is that when our script returns the list, it
includes “FW”, which NLTK assigns to non-English words.1 By probing
what this word is:

for word, tag in irritanttagged:
 if tag == "FW":
 print (word)

It is revealed that the word is “masked”, rather than the far more likely
invented words of Irritant, such as “turq” (a contraction of turquoise,
perhaps?) and “elbowthumbs” (an impossible body part?). This
exercise reminds us of the limitations of our method. The delegation of
“masked” as “foreign” aside, we can use this information to generate a

1	 The relegation of all non-English words to the category of “foreign” is somewhat
problematic.

� 25713. Code against code: Creative coding as research methodology

much shorter list of words and get closer to understanding how Irritant’s
patterns manifest. Firstly, we define a function for simplifying words to
avoid repetition. At the moment, all this function will do is change a
word to lower case and add it to our working ‘evolving words’ list.

def simplify(word, targetlist):
 word = word.lower()
 if word not in targetlist:
 targetlist.append(word)

We then identify all tags we wish to keep and simplify the associated
words.

goodtags = ['NN,','JJ','VBD','PRP','NNP','RB','NNS','VBN','V
B','PDT','VBG',
 'PRP$','VBP','VBZ','RBR','JJR','UH','JJS','FW']
evolvingwords = []
for word,tag in irritanttagged:
 for gt in goodtags:
 if tag == gt:
 simplify(word,evolvingwords)
print (evolvingwords)
print (len(evolvingwords))

The resulting list is not perfect, coming in at 332 words and featuring
several duplicates in the form of plurals and different tenses. We test
its use by first running it through our word count function from earlier
(“visualise (evolvingwords,irritantlist)”). Our resulting graphs were
better, but a few words have slipped through the categorical cracks,
such as “is” and “as”. We can quickly remove them and run our code
again: the results are depicted in Figure 13.2. Interestingly enough,
this level of manual editing moves us closer to Larson’s practice, as he
made a few changes to his output. However, we are still maintaining
a computational slant by not directly deleting data points and instead
using scripting to do so.

badwords = ['is','as','so','it']
for bw in badwords:
 evolvingwords.remove(bw)
visualise(evolvingwords,irritantlist)

258� Digital Humanities in the India Rim

Fig. 13.2 The top 50 and bottom 50 of our “evolving words” in Irritant, sorted by
frequency.

� 25913. Code against code: Creative coding as research methodology

Our resulting visualisations show a lot more promise. The most
common word in the text appears to be “something”, indicating that it
either never evolves, or is the final piece to do so. “Irritant”, “irr” and
“irrd” all make the top 50, which is unsurprising. The absence of “red”
is interesting. The novel’s opening would make it seem that “red” will
feature prominently. Instead, “blue” steals the show.

It is here we start to question what constitutes a unique ‘word’ in
Larson’s pattern. Are “cough” and “coughed” unique permeations,
or the same permeation but with the tense skewed either by code or
by Larson’s hand? If the former, then the permeations are greater than
Larson stated. If the latter, then having a list to access the permeations
directly would go a long way towards unravelling Irritant. We could
achieve this by reducing each instance to its base form. NLTK can achieve
this via the “lemmatize()” function. Adding this to our simplify function
has unintended consequences, as it converts “went” to “go”, “ground” to
“grind” and a few other transformations that make our list too divorced
from the original text to be useful. Perhaps we need to flip the script and
search for the words around the permeations. We fall again to our creative
coding mantra of experimentation and attempt to retrieve some sort of
‘boilerplate’ of Irritant. We first create a new list of every sentence.

badpunctuation = ["?","!"]
irritantcleaned = irritant
for bd in badpunctuation:
 irritantcleaned = irritant.replace(bd,".")
 irritantsentencelist = irritantcleaned.split(". ")
for sentence in irritantsentencelist:
 print (sentence)
 print (len(irritantsentencelist))

We then filter this down to just the unique sentences.

irrusentences = []
for sentence in irritantsentencelist:
 if sentence not in irrusentences:
 irrusentences.append(sentence)
 print (sentence)
print (len(irrusentences))

While the novel contains 20,724 sentences, only 1612 of these are unique.
This leaves us with 19,112 repetitions throughout the novel. This is

260� Digital Humanities in the India Rim

interesting, as a cursory look over Irritant gives the appearance that
sentences change constantly, if only slightly. We will return to this number
soon, but first we want to finish what we started and try to find the
boilerplates of the text, replacing each evolving word with “<BLANK>”.

boilerplates = []
irritantcleanlist = irritantcleaned.split(" ")
irritantnewlist = []
evolvingwords_punctuated = []

missedwords = ["flowerpot", "chair", "porch", "truck",
"carpenter", "door", "shell", "piano", "kitchen",
"showboat", "hearth", "balloon", "woman", "moon", "man"]

for mw in missedwords:
 evolvingwords.append(mw)

for word in evolvingwords:
 evolvingwords_punctuated.append(word + ".")

for word in irritantcleanlist:
 if word in evolvingwords or word in evolvingwords_
punctuated:
 irritantnewlist.append("<BLANK>")
 else:
 irritantnewlist.append(word)

irritant_boilerplated = " ".join(irritantnewlist)
boilerplates = irritant_boilerplated.split(". ")

boilerplates_unique = []
for sentence in boilerplates:
 if sentence not in boilerplates_unique:
 print (sentence)
 boilerplates_unique.append(sentence)

print (len(boilerplates_unique))

As we peruse our results, it becomes clear that certain obviously evolving
words such as “flowerpot” have evaded NLTK’s categorising. The
results are noisy, and don’t seem to show any patterns. Our hypothesis
of some ‘generic’ words and some ‘non-generic’ words may have been
inaccurate. Perhaps all words are permeating. If so, what method is
keeping these sentences ‘in check’? Perhaps reducing each sentence to
its semantic NLTK tags will help shed our text of any noise.

� 26113. Code against code: Creative coding as research methodology

justtags = []
for word, tag in irritanttagged:
 justtags.append(tag)

irritanttags = " ".join(justtags)

irritanttagsents = irritanttags.split(". ")

for sent in irritanttagsents:
 print (sent + " ---------> " + str(len(sent.split(" "))))

Still no discernible patterns seem to emerge. Word type and sentence
length are arbitrary, with no overarching patterns. While this might be
discouraging, it is par for the course: our philosophy of hacking away at
this novel has already dramatically changed our understanding of how it
works. Larson’s claims seem to be completely false, or else made obsolete
by his human-level tampering. Instead, the abstracted, hacked artefact of
Irritant is forming into something far different. But we aren’t done yet.

While we are unable to find patterns on this macro level, due to the
difference in size between our complete sentence list and our unique
sentence list, we know there is repetition. So, how often does a new
sentence manifest? We can better understand this by visualising it, charting
each period of repetitions and how many sentences repeat between them.

repeatcount = 0
repeats = []
periods = []
periodcount = 0
newsentences = []
irritantsentencelist = irritantcleaned.split(". ")
for sentence in irritantsentencelist:
 if sentence not in newsentences:
 if repeatcount != 0:
 periodcount += 1
 periods.append(periodcount)
 repeats.append(repeatcount)
 repeatcount = 0
 newsentences.append(sentence)
 else:
 repeatcount += 1

df = pd.DataFrame({'period': periods, 'length':repeats})
ax = df.plot.barh(x='period',y='length', figsize=(20,500),
fontsize=20)

262� Digital Humanities in the India Rim

Fig. 13.3 All intervals between new sentences in Irritant and their lengths. Each
column represents 300 intervals.

� 26313. Code against code: Creative coding as research methodology

The result is depicted in Figure 13.3, which we have cropped and edited
for readability. The resulting graph shows us that the intervals fluctuate
in length, but overall become longer as the text continues. Many short
intervals are slowly littered with longer ones, peaking at the 585th mark
and slowly shrinking again, with the final few intervals shorter than the
first bout. What does this tell us about Irritant? Sierra-Paredes (2017)
refers to the “slow rhythm” (p. 31) of Irritant created by its repetitions.
However, this rhythm is hard to discern. Via our visualisation, it becomes
manifest.

The themes represented by the irritant itself are becoming clear. There
are over sixteen intervals in Irritant where the gap between new sentences
is over 100, with the largest gulf between repetition and permeation
being 157. The maelstrom of repetition and monotony, disturbed by the
spectre of allegory, that the reader must endure between each glimmer
of newness is quantified. Due to such a high degree of repetition, we are
left to wonder if most readers would even be aware of when repetitions
were occurring. In effect, the clarity of our visualisation makes Irritant’s
obscurity more evident.

There is one last process we wish to perform. It is likely that all words
permutate, and that Larson’s clues were red herrings. However, we
are still interested in when some of the more prominent words appear.
Perusing our earlier lists and counts, we notice that the “infant”—a
symbol for the future and a linguistic warping of “irritant”—erupts into
the text towards its end. Perhaps more meaning lies in mapping some of
the other terms, plucking them from the maelstrom of conjunctions and
articles to better understand the presence of flowerpots, women, blue
and even the irritant itself.

We initially experimented with visualising the occurrence of each
evolving word per sentence, but with over 20,000 sentences (retrieved via
“print (len(irritantsentencelist))”), it would be difficult to meaningfully
visualise within the Jupyter notebook environment. Additionally, each
word is only going to appear in a sentence once or twice, meaning any
visualisation is going to be one of many ups and downs, without a clear
view of how words rise and fall on a meaningful scale. We return to
Laron’s clues and divide Irritant into “chunks” of 4000 words, yielding
69 chunks in total.

264� Digital Humanities in the India Rim

span = 4000
irritantchunks = []

for i in range(0, len(irritant_np.split(" ")), span):
 irritantchunks.append(irritant_np.split(" ")[i:i + span])
print(len(irritantchunks))

This code creates 36 graphs, which together act as a sort of summary of
the novel. Unsurprisingly, some of these “scenes” are more interesting
than others. In our first plot (Figure 4), “extras” has many mentions early
on, but then drops off dramatically before we hit 10 chunks. “Safe” meets
a similar fate, although it never had much power to begin with. “Red” has
a few in the early chunks and then disappears before we get to chunk 20.

Fig. 13.4 Our first-word progression plot, depicting the words “red”, “lived”,
“safe”, “went”, “something”, “back”, “extra”, “listen”, “nearby” and “extras”.

Of course, the novel’s namesake is worth interrogating. As shown
in Figure 13.5, the irritant entity makes it through almost the entire
novel. Far from the most popular entity, the irritant lurks within the
permutations, popping up here and there, occasionally announcing
itself before slinking back into the darkness. Much like the reader’s
search for resolution, the “irritant” itself is just out of reach, skulking

� 26513. Code against code: Creative coding as research methodology

between linguistic twists and turns. In our graph, however, we do see
some resolution: the irritant disappears towards the end of the novel
completely, dropping to zero appearances before all is said and done.

Fig. 13.5 A plot that shows the frequency of “irritant” throughout the novel.

Fig. 13.6 A plot showing the frequency of “away”, illustrating how it dwarfs the
terms it was featured with.

266� Digital Humanities in the India Rim

Fig. 13.7 Two plots showing the similar patterns of “have” and “seemed”, which
have been spotlighted for clarity.

Some patterns emerge that may simply be red herrings. “Away” dwarfs
the words it is visualised with (Figure 13.6) but may not seem so
mighty if grouped with others. As Figure 13.7 shows, “seemed” and
“have” feature similar patterns between chunks 40 and 50, but is this at
all noteworthy? While some instances show large intervals between our
word lines, others bunch together, creating interesting patterns, as seen
in Figure 13.8.

Fig. 13.8 A plot showing the interesting pattern that emerges when the frequencies
of “fronted”, “expected”, “sought”, “crashed”, “trembled”, “exasperatedly”,

“entire”, “well”, “returned” and “feels” are featured together.

� 26713. Code against code: Creative coding as research methodology

These visualisations illustrate the importance of filtering our data. As
a final visualisation, we take 10 words that we believe—together—will
tell us more about Irritant. The words chosen are “irritant”, “infant”,
“finally”, “weeping”, “digest”, “clay”, “whispered”, “slammed”,
“cried” and “showboat”, as displayed in Figure 13.9. Comparing these
words tells the story of Irritant: we see the irritant persist throughout,
suffering a dip about a fifth of the way into the text, but then rising
again multiple times. Ultimately, however, the irritant falls, eclipsed by
the infant. In the background, the nature of the world is changing: the
world of clay is replaced by one of whispering and slamming, emotions
running high before the outburst of crying that usher in the infant’s
arrival. A dangerous and primordial (clay) world is replaced with one
of new beginnings and emotional relief. Meanwhile, a Greek choir of
weeping and showboats bubbles beneath the surface, almost unnoticed
throughout. Of course, this is the showboats’ plan, appearing as the
final word of the text, and thereby one of its most memorable.

Fig. 13.9 Our final visualisation of Irritant, comparing the frequencies of “irritant”,
“infant”, “finally”, “weeping”, “digest”, “clay”, “whispered”, “slammed”, “cried”

and “showboat”.

268� Digital Humanities in the India Rim

Conclusions

Our final plot, while interesting, is simply one interpretation. Were we
to select a different set of 10 words, we would be presented with a far
different story. Our visualisation of the irritant yielding to the infant,
along with our other visualisations, word counts and missteps along
the way, provide us insight into how creative coding may function as a
method of close computational criticism. We conclude our experiment
yielded a form of analysis that was both interpretive and performative.

As an interpretation, our methodology provides an additional layer.
We become divorced from the text proper, with our visualisations
becoming the actual texts that we ‘read’ and interpret. However, this act
of interpretation is preceded by many more interpretations. Every time
we choose a method of representation or retrieve data, we are making a
judgement as to what elements are relevant. If our analysis had begun
with a shorter or longer list of ‘evolving words’, we may have ended
up with far different conclusions. This extra layer is useful but has its
flaws. As the reader explores the text through abstraction and selection,
elements may be lost or forgotten. Of course, we can always return to the
initial text, but it certainly suggests one can become ‘lost’ within their
quantified text. We should consider the ramifications of representation
when conducting these changes. Could a reader inadvertently erase the
stories of marginalised groups within a text through these methods, with
their resulting plots distorting the messages of the original text? The
problem is not indomitable, but we must be wary not to let abstraction
obfuscate the original text.

As a performance, the breakdown of the text and its abstraction is a
sort of live sculpting. The original text, as data, is honed and reformed
multiple times, revealing its different textures and contours with each
iteration. We align ourselves here with the philosophy behind LitVis, a
data visualisation tool created to allow data communicators to iterate
on their visualisations, reflecting as they go (Wood et al., 2018). This
chapter is a testament to that, acting as a sort of memoir of analysis,
containing observations and reflections alongside findings. Returning
to our hacker concept, the creative coding critic becomes the trickster
of mythology, the text itself their sphynx, labyrinth, or gorgon. In truth,
a creative coding methodology needn’t be performative, but simply

� 26913. Code against code: Creative coding as research methodology

presenting the resulting visualisations does little to advance knowledge
of the text. Indeed, we hope this chapter has contributed knowledge on
Irritant, as well as the use of computational mechanisms to deconstruct
a text itself.

Creative coding is itself, a creative practice. As our analysis has
shown, this is not a methodology steeped in calculated pre-theorising
and planning. Instead, our approach suggests a sort of performance
of criticism. Harkening to DH’s older ethos of performativity and
aesthetics (Svensson, 2010), we present a method that places the
digital humanist in a dance with the textual object: offering, receiving,
analysing, repeating. We do not seek to replace these more carefully
planned forms of analysis, but instead offer another approach that asks
the digital humanist to embrace playful analysis.

Our method of creative coding as research methodology is presented
as an additional tool in the arsenal of the literature/media analyst. Far
from the distant reading techniques typical of DH, our approach places
us closer to the text, forced to enter into, pull apart and remould the text
itself. The algorithmic structure behind Irritant was not ‘cracked’ as we
first set out to do. It appears there is no consistent morphing of each
word, nor does there seem to be consistency of sentence structure/length.
However, in our process of trying to unravel Irritant’s mysteries, we have
found new themes and patterns. Given this chapter is a relatively brief
exploration of what is a thick tome, it is likely that far more lies beneath
Irritant’s surface, and that some of it can perhaps only be revealed by
further trying to beat the book at its own game. In this way, our work
aligns with Saum-Pascual’s (2020) view of “critical creativity”, which
he describes as something “wildly transformative that disrupts and
changes the way we say, make, and do things. Creativity becomes a
ballast to rationality” (par. 36). Far from the end of this story, our plunge
into the depths of Irritant offers a few introductory steps into a method
of close reading that conceives of the writer as puzzle maker, reader as
hacker, and pits code against code.

270� Digital Humanities in the India Rim

Works Cited

Artut, S. (2017). Incorporation of computational creativity in Arts Education:
Creative coding as an Art Course. SHS Web of Conferences 37. https://www.
doi.org/10.1051/shsconf/20173701028.

Bakels, J-H., et al., (2020). Matching computational analysis and human
experience: Performative arts and the Digital Humanities. Digital Humanities
Quarterly 14(4). www.digitalhumanities.org/dhq/vol/14/4/000496/000496.
html

Bergstrom, I., & Lotto, R.B. (2015). Code bending: A new creative coding practice.
Leonardo 48(1), 25–31. https://www.doi.org/10.1162/LEON_a_00934

Burgess, C., et al., (2020). Stamper: An artboard-oriented creative coding
environment. CHI EA ‘20L Extended Abstracts of the 2020 CHI Conference
on Human Factors in Computing Systems, 1–9. https://www.doi.
org/10.1145/3334480.3382994

Butler, B., & Larson, D. (2013, September 11). If you build the code, your
computer will write the novel. Vice. www.vice.com/en/article/nnqwvd/if-
you-build-the-code-your-computer-will-write-the-novel

Christie, A. & Tanigawa, K. (2016). Mapping Modernism’s Z-axis: A Model
for Spatial Analysis in Modernist Studies. In S. Ross & J. O’Sullivan (Eds).
Reading Modernism with Machines. (pp. 79–107). Palgrave Macmillan. https://
doi.org/10.1057/978-1-137-59569-0_4

Coetzee, C. (2023, March 24). Generating a full-length work of fiction with GPT-
4. Medium. https://medium.com/@chiaracoetzee/generating-a-full-length-
work-of-fiction-with-gpt-4-4052cfeddef3

Digital Scholar. (2024). Omeka. https://omeka.org/

Dobson, J.E. (2019). Critical Digital Humanities: The Search for a Methodology.
University of Illinois Press.

Edmond, C. (2016). The poet’s other self: Studying machine writing through the
Humanities. Humanity 7, 1–29. novaojs.newcastle.edu.au/hass/index.php/
humanity/article/view/46

Edmond, C. (2019). Poetics of the Machine: Machine Writing and The AI Literature
Frontier. Macquarie University. Thesis. https://doi.org/10.25949/19436060.
v1

Fullwood, M. (2014). Twide and Twejudice at NaNoGenMo 2014. Michelle
Fullwood. michelleful.github.io/code-blog/2014/12/07/nanogenmo-2014/

Greenberg, I., et al., (2013). Processing: Creative Coding and Generative Art in
Processing 2. Springer.

http://www.digitalhumanities.org/dhq/vol/14/4/000496/000496.html
http://www.digitalhumanities.org/dhq/vol/14/4/000496/000496.html
https://www.vice.com/en/article/nnqwvd/if-you-build-the-code-your-computer-will-write-the-novel
https://www.vice.com/en/article/nnqwvd/if-you-build-the-code-your-computer-will-write-the-novel
https://medium.com/
https://omeka.org/
http://novaojs.newcastle.edu.au/hass/index.php/humanity/article/view/46
http://novaojs.newcastle.edu.au/hass/index.php/humanity/article/view/46
https://doi.org/10.25949/19436060.v1
https://doi.org/10.25949/19436060.v1
http://michelleful.github.io/code-blog/2014/12/07/nanogenmo-2014/

� 27113. Code against code: Creative coding as research methodology

Hansen, N., et al., (2014). Crafting Code at the Demo-scene. DIS ‘14: Proceedings
of the 2014 Conference on Designing Interactive Systems, 35–8. https://www.doi.
org/10.1145/2598510.2598526.

Heflin, J. (2020, March 3). How Do You Map an AI Art World? Immerse, immerse.
news/how-do-you-map-an-ai-art-world-8beb3e77a52b

Larson, D. (2011). Pigs. Sleeping Fish. web.archive.org/web/20180118034035/
http://www.sleepingfish.net/X/070911_Larson/

Larson, D. (2013). Irritant. Dznac Books.

McElroy, J. (2014). Plus. Dznac Books.

Montfort, N. (2016). Exploratory Programming for the Arts and Humanities. MIT
Press.

Murphet, J. (2016). Short Story Futures. In D. Head (Ed.). The Cambridge History
of the English Short Story. (pp. 598–614). Cambridge University Press.

Mulligan, J. (2021). Computation and Interpretation in Literary Studies. Critical
Inquiry 48 (1), 126–143. https://doi.org/10.1086/715982

Nikitina, S. (2012). Hackers as tricksters of the digital age: Creativity in hacker
culture. The Journal of Popular Culture 45(1), 133–-52.

Orekhob, B., & Fischer, F. (2020). Neural reading: Insights from the analysis
of poetry generated by artificial neural networks. ORBIS Litterarum, 230–46.
https://www.doi.org/10.1111/oli.12274.

Perec, G. (1987). Life: A User’s Manual (D. Bellos, Trans.). Godine.

Project Jupyter. Jupyter Notebook. jupyter.org/

Robinson, E.S. (2011). Shift Linguals: Cut-Up Narratives from William S. Burroughs
to the Present. Rodopi.

Samuels, L., & McGann, J. (1999). Deformance and interpretation. New Literary
History 30(1), 25–56. https://dx.doi.org/10.1353/nlh.1999.0010

Saum-Pascual, A. (2020). Digital creativity as critical material thinking: The
disruptive potential of electronic literature. Electronic Book Review. https://
www.doi.org/10.7273/grd1-e122

Svensson, P. (2010). The Landscape of Digital Humanities. Digital Humanities
Quarterly 4 (1).

Sierra-Paredes, G. (2017). Postdigital synchronicity and syntopy: The
manipulation. Neohelicon 44, 27–39. https://www.doi.org/10.1007/s11059-
017-0379-8

Sinclair, S. & Rockwell, G. (2024). Voyant Tools. https://voyant-tools.org

Kazemi, D. (2013). NaNoGenMo. nanogenmo.github.io/

Walton, N. (2019). AI Dungeon 2. www.aidungeon.io/

http://web.archive.org/web/20180118034035/http
http://web.archive.org/web/20180118034035/http
http://www.sleepingfish.net/X/070911_Larson/
https://doi.org/10.1086/715982
http://jupyter.org/
https://dx.doi.org/10.1353/nlh.1999.0010
https://voyant-tools.org
http://nanogenmo.github.io/
http://www.aidungeon.io/

272� Digital Humanities in the India Rim

Wardrip-Fruin, N. (2005). Christopher Stratchey: The First Digital Artist? Grand
Text Auto. grandtextauto.soe.ucsc.edu/2005/08/01/christopher-strachey-
first-digital-artist/

Wood, J., et al., (2018). Design exposition with literate visualization and
computer graphics. IEEE Transactions on Visualization 25(1), 759–68. https://
www.doi.org/10.1109/TVCG.2018.2864836.

http://grandtextauto.soe.ucsc.edu/2005/08/01/christopher-strachey-first-digital-artist/
http://grandtextauto.soe.ucsc.edu/2005/08/01/christopher-strachey-first-digital-artist/

